First order $O D E$ -
Differential equation. A differential equation is an equation containing derivatives, of of

Some examples.

1. $\quad \frac{m d^{2} x}{d t^{2}}=F\left(x_{1}, t, \frac{d x}{d t}\right)$

The Newton's law for the position $x(t)$ of a particle acted upon by a force F which is en function of x, t and $d x / d t$ is represented by a $d . \varepsilon$.

Newton's Seconal low of motion.
2

$$
m \frac{d^{2} x}{d t^{2}}=F(t)
$$

Where $x(t)$ is the mass's displacement measured tron the origin.
3. $\frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \sin \theta=0$

This equation governs the englual motion $d(x)$ of a pendulum of length l, undue the effect of gravity. here g is the acceleration by gravity and to is the time.
"Ordionary differential Equations

A dr Containing a single independent variable and the derivative

1.9 Solution of differential equations of the first order and first degree

 An ordinary differential equation of first order and first degree is of the form $f\left(x, y, \frac{d y}{d x}\right)=0$ or $\frac{d y}{d x}=\frac{f_{1}(x, y)}{f_{2}(x, y)}$ or $M(x, y) d x+N(x, y) d y=0$ or $\frac{d y}{d x}=f(x, y)$.The general solution of such equations will contain only one arbitrary constant.

All differential equations of the first order and first degree cannot be solved in every case. Only those which belong to or can be reduced to one of the following types can be solved by the standard methods. These types are :
(1) Equations in which variables are separable.
(2) Homogeneous equations.
(3) Linear equations.
(4) Exact eqauations.

Variable separable
If a differential equation of the first order and first degree can be put in the form.

$$
f_{1}(x) d x+f_{2}(y) d y=0
$$

then it is called variable separable equation.
Integrating, we get

$$
\int f_{1}(x) d x+\int f_{2}(y) d y=C \text { as its general solution, }
$$

C being an arbitrary constant.
Further, equation of the form

$$
\frac{d y}{d x}=f(a x+b y+c) \text { can be reduced to a form in which variables are }
$$ separable by putting $a x+b y+c=v$.

EXAMPLE 1 Solve $\frac{d y}{d x}=e^{x-y}+x^{2}$
SOLUTION

$$
\begin{aligned}
& \frac{d y}{d x}=\left(e^{x}+x^{2}\right) e^{-y} \\
& e^{y} d y=\left(e^{x}+x^{2}\right) d x
\end{aligned}
$$

Integrating, we get

EXAMPLE 2 Solve $x \frac{d y}{d x}+\cot y=0$ given $y=\frac{\pi}{4}$ when $x=\sqrt{2}$.
SOLUTION $x d y+\cot y d x=0$

$$
\Rightarrow \tan y d y=-\frac{d x}{x}
$$

Integrating, we get

$$
\log \sec y=-\log x+\log c
$$

$\Rightarrow \log \sec y^{\prime}+\log x=\log c$

$$
\begin{equation*}
\Rightarrow \log \frac{1 x}{\cos y}=\log c \quad \therefore x=c \cos y \tag{1}
\end{equation*}
$$

When $x=\sqrt{2}, y=\frac{\pi}{4}$ then we get

$$
\sqrt{2}=c \cos \frac{\pi}{4} \Rightarrow \sqrt{2}=\frac{c}{\sqrt{2}} \quad \therefore c=2
$$

Substituting the value of c in (1), we have

- $x=2$ cosy is the particular solution of the given equation.

EXAMPLE 3 Solve $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$
SOLUTION

$$
\begin{aligned}
& \quad y-a y^{2}=(x+a) \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{y(1-a y)}=\frac{d x}{x+a} \\
& \text { Integrating we get } \\
& \int\left(\frac{1}{y}+\frac{a}{1-a y}\right) d y=\int \frac{d x}{x+a}+\log c \\
& \Rightarrow \quad \log y-a \cdot \frac{1}{a} \log (1-a y)=\log (x+a)+\log c
\end{aligned}
$$

Prob ${ }^{m}$

$$
\begin{aligned}
& \sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0 \\
& \sqrt{\left(1+x^{2}\right)\left(1+y^{2}\right)}+x y \frac{d y}{d x}=0 \\
& \frac{\sqrt{1+x^{2}}}{x} d x+\frac{y}{\sqrt{1+y^{2}}} d y=0 \\
& \frac{1+x^{2}}{x \sqrt{1+x^{2}}} d x+\frac{y}{\sqrt{1+y^{2}}} d y=0 \\
& \int \frac{1}{x \sqrt{1+x^{2}}} d x+\int \frac{x}{\sqrt{1+x^{2}}} d x+\int \frac{y}{\sqrt{1+y^{2}}} d y=0 \\
& \neq \int \frac{-y t^{2}+d t}{\frac{1}{t} \sqrt{1+\frac{1}{x^{2}}}+\int \frac{x}{\sqrt{1+x^{2}}} d x}+\int \frac{y}{\sqrt{1+y^{2}}} d y=0 \\
& \quad-\int \frac{d t}{\sqrt{t^{2}+1}}+\int \frac{x}{\sqrt{1+x^{2}}} d x+\int \frac{y}{\sqrt{1+y^{2}}} d y=0 \\
& -\log \left\{t+\sqrt{x^{2}+1}\right\}+\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=c \\
& -\log \left\{\frac{1+\sqrt{1+x^{2}}}{x}\right\}+\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=c \\
&
\end{aligned}
$$

Homogeneous differential equation.

$$
\begin{gathered}
\text { mogeneous } \left.x^{3}+3 x y^{2}\right) d x+\left(y^{3}+3 x^{2} y\right) d y=0 \\
\frac{d y}{d x}=-\frac{x^{3}+3 x y^{2}}{y^{3}+3 x^{2} y}=-\frac{1+3(y / x)^{2}}{(y \mid x)^{3}+3(y / x)} \\
y / x=v \text { ie. } y=v x \\
\frac{d y}{d x}=v+x \frac{d v}{d x} \\
v+x \frac{d v}{d x}=-\frac{1+3 v^{2}}{v^{3}+3 v} \\
x \frac{d v}{d x}=-\frac{1+3 v^{2}}{v^{3}+3 v}-v=-\frac{v^{4}+6 v^{2}+1}{v^{3}+3 v} \\
\frac{d x}{x}=-\frac{v^{3}+3 v}{v^{4}+6 v^{2}+1} \\
4 \frac{d x}{x}=-\frac{4 v^{3}+12 v}{v^{4}+6 v^{2}+1} \\
\log x^{4}=-\log \left[v^{4}+6 v^{2}+1\right]+\log c \\
x^{4}\left(v^{4}+6 v^{2}+1\right)=c \\
x^{4} y^{4}+6 y^{2}+x^{4}=c
\end{gathered}
$$

Prob

$$
\begin{aligned}
& \left(2 x+e^{y}\right) d x+x e^{y} d y=0 \\
& m=2 x+e^{y} \quad N=x e^{y} \\
& \frac{\partial M}{\partial y}=e^{y} \quad \frac{\partial N}{\partial x}=e^{y} \\
& \int M d x+\int N(\text { Terms free from } x) d x=c \\
& \int 2 x+e^{y} d x+\int 0 d y=c \\
& e^{\frac{y}{x}} \cdot x^{2}+x e^{y}=c
\end{aligned}
$$

Prob ${ }^{m}$

$$
\begin{equation*}
\left((x+1) e^{x}-e^{y}\right) d x-x e^{y} d y=0 \tag{1}
\end{equation*}
$$

501^{n}

$$
\begin{aligned}
& M=(x+1) e^{x}-e^{y} \\
& N=-x e^{y} \\
& \frac{\partial M}{\partial y}=-e^{y} \quad \frac{\partial N}{\partial x}=-e^{y} \\
& \int\left((x+1) e^{x}-e^{y}\right) d x+\int 0 d y=C
\end{aligned}
$$

$$
\begin{gathered}
(x+1) e^{x}-e^{x}-x e^{y}=C \\
\left.x 6^{x}-e^{y}\right)=C
\end{gathered}
$$

$$
\begin{aligned}
& x\left(e^{x}-e^{y}\right)=c \\
& x=1, y=0
\end{aligned}
$$

$$
e-1=c
$$

$$
x\left(e^{x}-e^{y}\right)=e-1
$$

Exact diE. Dy ${ }^{n}$
If M and N are functions of x and y. the Equation $M d x+N d y=0$
is called exact when there Exists a function $f(x, y)$ of x and y such that

$$
\begin{aligned}
& d[f(x, y)]=M d x+N d y \\
& \text { i.e } \quad \frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=M d x+N d y
\end{aligned}
$$

Ex are. $y^{2} d x+2 x y d y=0$.
is an exact 9.9. for there Exits a function $x y^{2}$ such that

$$
\begin{gathered}
d\left(y^{2} x\right)=y^{2} d x+2 x y d y=0 \\
d\left(y^{2} x\right)=0 \\
x y^{2}=c
\end{gathered}
$$

The Necessary condition for a d. E. of f.of.a
to be Exact.

$$
\begin{gathered}
d(f(x, y))=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=M d x+N d y \\
\frac{\partial f}{\partial x}=M, \quad \frac{\partial f}{\partial y}=N
\end{gathered}
$$

Equating calficients af dx end $d y$ in (3).

Diff, partially w r. to y

$$
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}
$$

Diff partially w. r. to x

$$
\begin{align*}
& \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y} \\
& \text { Since } \quad \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y} \Rightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} . \tag{4}
\end{align*}
$$

This. if (1) is exact M and N satisfy Condition
Prod er

$$
\begin{aligned}
& \quad(\tan y+x) d x+\left(x \sec ^{2} y-3 y\right) d y=0 \\
& \frac{\partial \mu}{\partial y}=\sec ^{2} y \quad \frac{\partial N}{\partial x-} \sec ^{2} y \\
& \int(\tan y+x) d x+\int(-3 y) d y=c \\
& x \tan y+\frac{x^{2}}{2}-\frac{3 y^{2}}{2}=c \\
& \text { Prot }^{m} \quad x d x+y d y=\frac{a(x d y-y d x)}{x^{2}+y^{2}} \\
& \operatorname{Sol}^{n} \quad x d x+y d y=\frac{a x d y}{x^{2}+y^{2}} \frac{a y d x}{x^{2}+y^{2}} \\
& \left(x+\frac{a y}{x^{2}+y^{2}}\right) d x+\left(y-\frac{a x}{x^{2}+y^{2}}\right) d y=0
\end{aligned}
$$

? SoA 80

$$
\begin{aligned}
& \frac{\partial n}{\partial y}=\frac{a\left(x^{2}+y^{2}\right)-a y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{a\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial N}{\partial x}=0+\frac{\left(x^{2}+y^{2}\right) a-a x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{a\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

$$
\int\left(x+\frac{a y}{x^{2}+y^{2}}\right) d x+\int y d y=c
$$

$$
\frac{x^{2}}{2}+a_{\cdot} \tan ^{-1} \frac{x}{y}+\frac{y^{2}}{2}=c
$$

Prob
Prob

$$
\begin{aligned}
& \frac{\left(y^{2} e^{x y^{2}}+4 x^{3}\right)}{M} d x+\frac{\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0}{N} \\
& \frac{\partial m}{\partial y}=2 y e^{x y^{2}} \# y^{2} e^{x y^{2}} \times 2 x y \\
& \frac{\partial N}{\partial x}=2 y e^{x y^{2}}+2 x y e^{x y^{2}} \times y^{2}-0 \\
& \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \\
& \int M d x+\int N(\text { Termy free fren } x) d y=c \\
& \int\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\int\left(-3 y^{2}\right) d y=C \\
& \frac{y^{2} e^{x y^{2}}}{y^{2}}+x^{4}-y^{3}=c
\end{aligned}
$$

Integrating factors
Rule 1. If $M x+N y \neq 0$ and the equation is then $\frac{1}{M x+N y}$ Homogeneous.
is an integrating factor.
Rule 2 fy $M_{x}-N_{y} \neq 0$ and the equation Con be written in the form.

$$
f_{1}(x y) y d x+f_{2}(x y) x d y=0 \text { then } \frac{1}{m x-N y}=I
$$

Rule 3 If $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)$ is a function of x alone. Say $f(x)$, then $e^{\int f(x) d x}=I$. F.

Rule 4. If $\frac{1}{m}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)$ is a finction of y alone lory $f(y)$, then $e^{\int} f(y) d y=$ I. F.
Prob
1.

$$
\begin{aligned}
& x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0 \\
& m=x^{2} y \quad \frac{\partial M}{\partial y}=x^{2} \\
& N=-\left(x^{3}+y\right) \quad \Rightarrow \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \\
& \frac{\partial N}{\partial x}=-3 x^{2} \quad
\end{aligned}
$$

AN. Not Exact. Homogeneous.
Multiplying the equation by $x^{3} y-\left(x^{3} y+y^{4}\right) y^{4}$

$$
-\frac{1}{y^{4}}\left(x^{2} y d x\right)-\left(-\frac{1}{y^{4}}\right)^{2}\left(x^{3}+y^{3}\right) d y=0
$$

Prob

$$
\begin{gathered}
-\frac{x^{2}}{y^{3}} d x+\frac{x^{3}+y^{3}}{y^{4}} d y=0 \\
\int\left(-\frac{x^{2}}{y^{3}}\right) d x+\int \frac{1}{y} d y=c \\
-\frac{x^{3}}{3 y^{3}}+\log y=c
\end{gathered}
$$

$$
\begin{aligned}
& \left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0 \\
& \frac{\partial M}{\partial y}=x^{2}-4 x y \quad \frac{\partial N}{\partial x}=-\left(3 x^{2}-6 x y\right)
\end{aligned}
$$

Not Exact.
Homogeneous.
then

$$
\begin{aligned}
& M x+N y=\left(x^{2} y-2 x y^{2}\right) x+\left[-x^{3}+3 x^{2} y\right) y \\
& M x+N y=\frac{x^{3} y-2 x^{2} y^{2}-x^{3} y+3 x^{2} y^{2}=x^{2} y^{2}}{I \cdot F}=\frac{1}{x^{2} y^{2}} \\
& \frac{x^{2} y-2 x y^{2} d x-\frac{\left(x^{3}-3 x^{2} y\right)}{x^{2} y^{2}} d y=0}{\left(\frac{1}{y}-\frac{2}{x}\right) d x-\left(\frac{x}{y^{2}}-\frac{3}{y}\right) d y=0} \\
& \int M d x+\int N(\text { hither }) d y=C \\
& \int\left(\frac{1}{y}-\frac{2}{x}\right) d x+\iint \frac{3}{y} d y=C \\
& \left(\frac{x}{4}-2 \log x+3 \log y=C\right.
\end{aligned}
$$

Prom $(x \cdot y \sin x y+\cos x y) y d x+(x y \sin y x-\cos x y) x d y=0$
sos

$$
f_{1}(x y) y d x+f_{2}(x y) x d y=0
$$

$$
\therefore \quad n=x y^{2} \sin x y+y \cos a y
$$

$$
N=x^{2} y \sin y x-x \cos x y
$$

$$
\rightarrow \frac{\partial M}{\partial y}=2 x y \sin x y+x y^{2} \cos x y \cdot x+\cos x y-y \sin x y .
$$

$$
=x y \sin x y+x^{2} y^{2} \cos x y+\cos x y
$$

$$
\begin{aligned}
\frac{\partial N}{\partial x}=2 x y \sin y x & +x^{2} y \cos x y \cdot y \\
& -\cos x y+x \sin x y, y
\end{aligned}
$$

$$
=\sin ^{x y} \sin y+x^{2} y^{2} \cos x y-\cos x y
$$

$$
M x-N y=(x y \sin x y+\cos x y) x y-(x y \sin y x+\cos x y)
$$

$$
\begin{aligned}
& M x-N y=2 x y \cos x y \\
& I \cdot F_{r}=\frac{1}{M x-N y}=\frac{1}{2 x y \cos x y} \\
& \frac{\cos x y) y d x}{\cos x y}+\frac{(x y \sin y x-\cos x y) x d y}{}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(x y \sin x y+\cos x y) y d x}{2 x y \cos x y}+\frac{(x y \sin y x-\cos x y) x d y}{2 x y \cos x y} \\
& \left(\frac{y}{2} \tan x y+6 \frac{1}{2 x}\right) d x+\left(\frac{x y \cos x y}{2} \tan x y-\frac{1}{2 y}\right) d y=0
\end{aligned}
$$

$$
\begin{gathered}
\int M d x f \int N(\text { withon } x) d y=c \\
\int\left(\frac{y}{2} \tan x y+\frac{1}{2 x}\right) d x+\int\left(-\frac{1}{2 y}\right) d y=c \\
-\frac{y}{2} \frac{\log \operatorname{los} x y}{y}+\frac{1}{2} \log x-\frac{1}{2} \log y=c \\
\log \sec x y+\log x-\log y=c \\
\frac{x \operatorname{coc} x y}{y}=c \\
x \sec x y=c y
\end{gathered}
$$

H.W.

$$
1\left(x^{2} y^{2}+2\right) y d x+\left(2-x^{2} y^{2}\right) x d y=0
$$

2. $\quad x(x-y) \frac{d y}{d x}=y(x+y)$
$3 \quad(1+x y) y d x+(1-x y) x d y=0$
3. $\quad y^{\prime}\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-2 x^{2} y^{2}\right) d y=0$
m
Prob
$80{ }^{n}$

$$
\left(x^{2}+y^{2}+1\right) d x-2 x y d y=0
$$

$$
\begin{gathered}
\frac{\partial M}{\partial y}=2 y, \quad \frac{\partial N}{\partial x}=-2 y \\
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \\
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=2 y+2 y=4 y \\
\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=\frac{-1}{2 x y} \times 4 y=\frac{-2}{x}=f(x)
\end{gathered}
$$

$$
\begin{gathered}
I \cdot F:=e^{\int-\frac{2}{x} d x}=e^{-2 \log x}=e^{\log x^{2}}=\frac{1}{x^{2}} \\
I \cdot F_{0}=\frac{1}{x^{2}} \\
\frac{x^{2}+\frac{y^{2}+1}{x^{2}} d x-\frac{2 x^{y}}{x^{2}} d y=0}{\left(1+\frac{y^{2}}{x^{2}}+\frac{1}{x^{2}}\right) d x-\frac{2 y}{x} d y=0} \\
\frac{\partial m}{\partial y}=\frac{2 y}{x^{2}} G x a c t . \\
\int\left(1+\frac{y^{2}}{x^{2}}+\frac{1}{x^{2}}\right) d x+\int 0 d y=c \\
x-\frac{y^{2}}{x}-\frac{1}{x}=C \Rightarrow x^{2}-y^{2}=1=c x
\end{gathered}
$$

Prob

$$
81^{n}
$$

$$
\begin{gathered}
\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0 \\
\frac{\partial M}{\partial y}=12 x^{2} y^{3}+2 x \quad\left(2 x y^{3}-1\right) x^{2} \\
\frac{\partial N}{\partial x}=6 x^{2} y^{3}-2 x \\
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=6 x^{2} y^{3}+4 x=2 x\left(3 x y^{3}+2\right) \\
\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=\frac{1}{x y\left(3 x y^{3}+2\right)} \times 2 x\left(3 x y^{3}+2\right) \\
=\frac{2}{y}=f(y) \\
\text { IrFF }=e^{\int \frac{2}{y} d y}=e^{2 / 4 y y}=y^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=\frac{1}{x} \sec y+\frac{1}{x} y \sec y \tan y-\tan ^{2} y-x \\
& +1-\frac{\sec y}{x} \\
& =\tan y\left[\frac{y \sec y}{x}-\tan y\right] \\
& \frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=\frac{1}{\left(\frac{y}{x} \sec y-\tan y\right)} \times \tan y\left(\tan y-\frac{y \sec y}{x}\right) \\
& =-\tan y=f(x) \\
& \text { I.F. }=e^{-\int \tan y d y}=e^{-\log \sec y}=\cos x y \\
& \cos y\left(\frac{y}{x} \sec y-\tan y\right) d x-\cos y(x-\sec y \log x) d y=0 \\
& \left(\frac{y}{x} \cos y \sec y-\cos x \operatorname{ten} y\right) d x-(x \cos y-\cos y \sec y \operatorname{los} x) \\
& \int \frac{y}{x} \operatorname{cosec} y \text {. } \\
& \int\left(\frac{y}{x}-\sin y\right) d x=c \\
& y \log x+\operatorname{co} y=c
\end{aligned}
$$

Linear Differential Equations

1) A first-order differential equation is Laid to be linear if it can be written

$$
y^{\prime}+P(x) y=P(x) .
$$

Where $P(x)$ and $Q(x)$ are functions of x or Constants.
If I.F $=e^{\int P d x}$.
Solution $y \cdot\left(I, F_{0}\right)=\int Q(x)$. IVF. $d x+C$
Similarly $\quad \frac{d x}{d y}+p_{x}=\Phi$
where P and Q we functions of y.
Prob

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{4 x}{x^{2}+1} y=\frac{1}{\left(x^{2}+1\right)^{3}} \\
& P=\frac{4 x}{x^{2}+1} \quad Q=\frac{1}{\left(x^{2}+1\right)^{3}} \\
& I \cdot F=e^{\int \frac{4 x}{x^{2}+1} d x}=e^{\left.2 \log x^{2}+1\right)}=\frac{1}{(t)}\left(x^{2}+1\right)^{2} \\
& y_{1} \frac{1}{\left(x^{2}+1\right)^{2}}=\int \frac{1}{\left(x^{2}+1\right)^{3}}=\left(x^{2}+1\right)^{2} d x+C \\
& =\int \frac{d x}{x^{2}+c}+c=\tan ^{-1} x+c
\end{aligned}
$$

Prob

$$
\begin{aligned}
& \frac{d y}{d x}+y=x \\
& p=1 \quad \subset=x \\
& E I \cdot F=e^{\int d x}=e^{x} \\
& S_{0}+y \cdot e^{x}=\int x \cdot e^{x} d x+C \\
& y e^{x}=x e^{x}-e^{x}+C \\
& y=x-1+c e^{-x}
\end{aligned}
$$

Prob

$$
\begin{aligned}
& \frac{d y}{d x}+(\sin x) y=e^{\cos x} \\
& P=\sin x \\
& Q=e^{\cos x} \\
& I F=e^{\int \sin x d x}=e^{-\cos x} \\
& \text { so } y \cdot e^{-\cos x}=\int e^{\cos x} \cdot e^{-\cos x} d x+c \\
& y+c
\end{aligned}
$$

R.र्b

$$
\begin{aligned}
& y^{\prime}+y \tan x=\sin 2 x, y(0) \\
& P=\tan x \quad Q=\sin 2 x \\
& \text { I. F. }=e^{\int \tan x d x}=e^{\log \sec x}-\sec x \\
& y \cdot \sec x=\int \sin 2 x \cdot \sec x d x=\int \frac{2 \sin x \cos x}{\cos x} d x
\end{aligned}
$$

$$
\begin{gathered}
y \cdot \sec x=\int 2 \sin x d x+c \\
y \sec x=-2 \cos +c \\
y=C \cos x-2 \cos ^{2} x \\
y(0)=1 \\
y=3=C-2 \rightarrow \cos x-2 \cos ^{2} x
\end{gathered}
$$

Bernoulli Equation

$$
\begin{aligned}
& y^{\prime}+P y=Q y^{n} \\
& y \frac{y^{\prime}}{y^{n}}+\frac{P y}{y^{n}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y^{\prime}}{y^{n}}+\frac{p}{y^{n-1}}=Q \\
& r(n-1) y^{(n-1)-1} d y=d t \frac{1}{y^{n-1}}=t \\
& -(n-1) y^{-n} d y=d x \quad n+\frac{1}{y^{n-1}+1} \frac{d y}{\frac{1-n f}{y}-n-2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{1}{x} y=x^{2} y^{6} \\
& \frac{1}{y^{6}} \frac{d y}{d x}+\frac{1}{y^{5}} \cdot \frac{1}{x}=x^{2}
\end{aligned}
$$

Now $\frac{1}{y^{8}} \quad y^{-5}=t$

$$
\begin{gathered}
-5 y^{-6} \frac{d y}{d x}=\frac{d t}{d x} \\
y^{-6} \frac{d y}{d x}=\frac{-1 d t}{5 d x} \\
-\frac{1}{5} \frac{d t}{d x}+\frac{t}{x}=x^{2} \\
\frac{d t}{d x}-\frac{5 t}{x}=-5 x^{2} \text { linear int. } \\
p=-\frac{5}{x}, Q=-5 x^{2} \\
I_{0} F_{0}=e^{\int-\frac{5}{x} d x}=-e^{-5 \log x}=\log ^{-5} x^{-5} \\
\frac{1}{x^{5}}
\end{gathered}
$$

Lot

$$
\begin{aligned}
& t \cdot \frac{1}{x^{5}}=\int\left(-5 x^{2}\right) \cdot \frac{1}{x^{5}} d x+c \\
& \frac{t}{x^{5}}=-5 \int \frac{d x}{x^{3}}+C \\
& \frac{y^{-5}}{x^{5}}=+\frac{5}{+2} \cdot \frac{1}{x^{2}}+c
\end{aligned}
$$

Mathematical Modellings

Hemlata Jethanandani

March 14, 2020

Constructing Mathematical Models

Real wold problems
Mathematical world problems Models

Constructing Mathematical Models

Real wold problems
Mathematical world problems Models
Observed behaviour or Phenomenon
Mathematical operations and rules Mathematical conclusions

Steps are usually involved

Steps are usually involved

Determine the variables and their relationships

Steps are usually involved

Determine the variables and their relationships

By using concepts and equations create a mathemtical model

Steps are usually involved

Determine the variables and their relationships

By using concepts and equations create a mathemtical model

Solve the model by mathematical techniques

Steps are usually involved

Determine the variables and their relationships

By using concepts and equations create a mathemtical model

Solve the model by mathematical techniques

Compute the conclusions and predictions with the real world problem

Motion of a particle falling under gravity
A particle falls from rest in a medium in which the resistence is $k v^{2}$ per unit mass. Find the velocity of the body and the distance it has fallen in t seconds.

Motion of a particle falling under gravity
A particle falls from rest in a medium in which the resistence is $k v^{2}$ per unit mass. Find the velocity of the body and the distance it has fallen in t seconds.

Solution

- let x be its distance from the starting point after time t

Motion of a particle falling under gravity
A particle falls from rest in a medium in which the resistence is $k v^{2}$ per unit mass. Find the velocity of the body and the distance it has fallen in t seconds.

Solution

- let x be its distance from the starting point after time t
- If v is its velocity at this point

Motion of a particle falling under gravity
A particle falls from rest in a medium in which the resistence is $k v^{2}$ per unit mass. Find the velocity of the body and the distance it has fallen in t seconds.

Solution

- let x be its distance from the starting point after time t
- If v is its velocity at this point
- The resistance on the particle is $m k v^{2}$ in the vertically upward direction.

Newton's second law Force= MassXAcceleration

- The equation of motion of the particle is

Newton's second law Force= MassXAcceleration

- The equation of motion of the particle is
- $m \frac{d^{2} x}{d t^{2}}=m g-m k v^{2}$

Newton's second law Force= MassXAcceleration

- The equation of motion of the particle is
- $m \frac{d^{2} x}{d t^{2}}=m g-m k v^{2}$
- $\frac{d^{2} x}{d t^{2}}=g-k v^{2}$

Newton's second law Force= MassXAcceleration

- The equation of motion of the particle is
- $m \frac{d^{2} x}{d t^{2}}=m g-m k v^{2}$
- $\frac{d^{2} x}{d t^{2}}=g-k v^{2}$
- $\frac{d v}{d t}=g-k v^{2}$

General solution

(1) $\frac{d v}{g-k v^{2}}=d t$

General solution

(1) $\frac{d v}{g-k v^{2}}=d t$
(2) $\frac{d v}{k\left[\left(\frac{g}{k}\right)-v^{2}\right]}=d t$

General solution

(1) $\frac{d v}{g-k v^{2}}=d t$
(2) $\frac{d v}{k\left[\left(\frac{g}{k}\right)-v^{2}\right]}=d t$
(3) Integrating we have $\frac{1}{k} \frac{1}{\sqrt{\left(\frac{g}{k}\right)}} \tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t+c_{1}$

General solution
(1) $\frac{d v}{g-k v^{2}}=d t$
(2) $\frac{d v}{k\left[\left(\frac{g}{k}\right)-v^{2}\right]}=d t$
(3) Integrating we have $\frac{1}{k} \frac{1}{\sqrt{\left(\frac{g}{k}\right)}} \tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t+c_{1}$
(9) Particular solution But initially, when $t=0, v=0$ from(2) $c_{1}=0$

Determination of distance x

- $\frac{1}{\sqrt{(} g k)} \tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t$

Determination of distance x

- $\frac{1}{\sqrt{(g k)}} \tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t$
- $\tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t \sqrt{g} k$

Determination of distance x

- $\frac{1}{\sqrt{(g k)}} \tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t$
- $\tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t \sqrt{g} k$
- $\frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=\tanh (t \sqrt{g} k)$

Determination of distance x

- $\frac{1}{\sqrt{(g k)}} \tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t$
- $\tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t \sqrt{g} k$
- $\frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=\tanh (t \sqrt{g} k)$
- $\left.v=\sqrt{(} \frac{g}{k}\right) \tanh (t \sqrt{g} k)$

Determination of distance x

- $\frac{1}{\sqrt{(g k)}} \tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t$
- $\tanh ^{-1} \frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=t \sqrt{g} k$
- $\frac{v}{\sqrt{\left(\frac{g}{k}\right)}}=\tanh (t \sqrt{g} k)$
- $\left.v=\sqrt{(} \frac{g}{k}\right) \tanh (t \sqrt{g} k)$
- $\left.\frac{d x}{d t}=\sqrt{(} \frac{g}{k}\right) \frac{\sinh (t \sqrt{g} k)}{\cosh (t \sqrt{g} k)}$

Determination of distance x

- $d x=\sqrt{\left(\frac{g}{k}\right) \frac{\sinh (t \sqrt{g} k)}{\cosh (t \sqrt{g} k)}} d t$
- Integrateing we get
$x=\frac{1}{k} \log \cosh (t \sqrt{g} k)+c_{2}$
- But initially, when $t=0, v=0$ from(3) $c_{2}=0$
- $x=\frac{1}{k} \log \cosh (t \sqrt{g} k)$

Electric Circuits

- The simplest electric circuit is a series circuit with

Electric Circuits

- The simplest electric circuit is a series circuit with
- A source of electric energy(battery or a generator)

Electric Circuits

- The simplest electric circuit is a series circuit with
- A source of electric energy(battery or a generator)
- A resistor

Electric Circuits

- The simplest electric circuit is a series circuit with
- A source of electric energy(battery or a generator)
- A resistor
- Inductors

Electric Circuits

- The simplest electric circuit is a series circuit with
- A source of electric energy(battery or a generator)
- A resistor
- Inductors
- Capacitors

Laws holds

- The voltage drop E_{R} across a resistor $E_{R}=R i$

Laws holds

- The voltage drop E_{R} across a resistor $E_{R}=R i$
- The voltage drop E_{L} across an inductor $E_{L}=L \frac{d i}{d t}$

Laws holds

- The voltage drop E_{R} across a resistor $E_{R}=R i$
- The voltage drop E_{L} across an inductor $E_{L}=L \frac{d i}{d t}$
- The voltage drop E_{C} across a capacitor $E_{C}=\frac{1}{C} Q$

Laws holds

- The voltage drop E_{R} across a resistor $E_{R}=R i$
- The voltage drop E_{L} across an inductor $E_{L}=L \frac{d i}{d t}$
- The voltage drop E_{C} across a capacitor $E_{C}=\frac{1}{C} Q$
- $i=\frac{d Q}{d t}$

Laws holds

- The voltage drop E_{R} across a resistor $E_{R}=R i$
- The voltage drop E_{L} across an inductor $E_{L}=L \frac{d i}{d t}$
- The voltage drop E_{C} across a capacitor $E_{C}=\frac{1}{C} Q$
- $i=\frac{d Q}{d t}$
- Kirchhoff's voltage law- The algebraic sum of the voltage drop in any closed circuit is equal to the resultant electromotive force acting in the circuit.

Laws holds

- The voltage drop E_{R} across a resistor $E_{R}=R i$
- The voltage drop E_{L} across an inductor $E_{L}=L \frac{d i}{d t}$
- The voltage drop E_{C} across a capacitor $E_{C}=\frac{1}{C} Q$
- $i=\frac{d Q}{d t}$
- Kirchhoff's voltage law- The algebraic sum of the voltage drop in any closed circuit is equal to the resultant electromotive force acting in the circuit.
- Kirchhoff's current law- At any point of a circuit, the sum of the inflowing current is equal to the sum of the outflowing currents.

RL-Circuit

Show that the current in a circuit containing a resistance R , an inductance L in series, with constant e.m.f.E. at time t is given by $i=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)$.

RL-Circuit

Show that the current in a circuit containing a resistance R , an inductance L in series, with constant e.m.f.E. at time t is given by $i=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)$.

Solution:Modelling

RL-Circuit

Show that the current in a circuit containing a resistance R , an inductance L in series, with constant e.m.f.E. at time t is given by $i=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)$.

Solution:Modelling
By KVL the sum of the two voltage drops must equal the electromotive force E; thus

RL-Circuit

Show that the current in a circuit containing a resistance R , an inductance L in series, with constant e.m.f.E. at time t is given by $i=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)$.

Solution:Modelling
By KVL the sum of the two voltage drops must equal the electromotive force E; thus
$L \frac{d i}{d t}+R i=E$

RL-Circuit

Show that the current in a circuit containing a resistance R , an inductance L in series, with constant e.m.f.E. at time t is given by $i=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)$.

Solution:Modelling
By KVL the sum of the two voltage drops must equal the electromotive force E; thus
$L \frac{d i}{d t}+R i=E$

General Solution
Equation(1) $\frac{d i}{d t}+\frac{R}{L} i=\frac{E}{L}$

General Solution
 which is linear I.F. $=e^{\int \frac{R}{L} d t}=e^{\frac{R}{L} t}$

General Solution

which is linear I.F. $=e^{\int \frac{R}{L} d t}=e^{\frac{R}{L} t}$
The solution is $i e^{\frac{R}{L} t}=\int \frac{R}{L} e^{\frac{R}{L} t} d t+c$

$$
\begin{equation*}
i e^{\frac{R}{L} t}=\frac{E}{R} e^{\frac{R}{L} t}+c \tag{2}
\end{equation*}
$$

Particular solution

 Initially when $t=0, i=0$
Particular solution
 Initially when $t=0, i=0$

By equation (2)

Particular solution

Initially when $\mathrm{t}=0, \mathrm{i}=0$

$$
\begin{aligned}
& \text { By equation (2) } \\
& c=-\frac{E}{R}
\end{aligned}
$$

Particular solution

Initially when $\mathrm{t}=0, \mathrm{i}=0$
By equation (2)
$c=-\frac{E}{R}$
so $i e^{\frac{R}{L} t}=\frac{E}{R} e^{\frac{R}{L} t}-\frac{E}{R}$
$i=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)$

RC-circuit

The charge Q on the plate of a condenser C charged through a resistance R by a steady voltage V satisfies the differential equation.
$R \frac{d Q}{d t}+\frac{Q}{C}=V$, if $\mathrm{Q}=0$ at $\mathrm{t}=0$, show that $i=\frac{V}{R} e^{-\frac{t}{R C}}$

RC-circuit

The charge Q on the plate of a condenser C charged through a resistance R by a steady voltage V satisfies the differential equation.
$R \frac{d Q}{d t}+\frac{Q}{C}=V$, if $\mathrm{Q}=0$ at $\mathrm{t}=0$, show that $i=\frac{V}{R} e^{-\frac{t}{R C}}$
Solution
Given equation
$\frac{d Q}{d t}+\frac{Q}{R C}=\frac{V}{R}$

RC-circuit

The charge Q on the plate of a condenser C charged through a resistance R by a steady voltage V satisfies the differential equation.
$R \frac{d Q}{d t}+\frac{Q}{C}=V$, if $\mathrm{Q}=0$ at $\mathrm{t}=0$, show that $i=\frac{V}{R} e^{-\frac{t}{R C}}$
Solution
Given equation
$\frac{d Q}{d t}+\frac{Q}{R C}=\frac{V}{R}$
which is linear differential equation
I.F. $=e^{\int \frac{1}{R C} d t}=e^{\frac{t}{R C}}$

RC-circuit

The charge Q on the plate of a condenser C charged through a resistance R by a steady voltage V satisfies the differential equation.
$R \frac{d Q}{d t}+\frac{Q}{C}=V$, if $\mathrm{Q}=0$ at $\mathrm{t}=0$, show that $i=\frac{V}{R} e^{-\frac{t}{R C}}$
Solution
Given equation
$\frac{d Q}{d t}+\frac{Q}{R C}=\frac{V}{R}$
which is linear differential equation
I.F. $=e^{\int \frac{1}{R C} d t}=e^{\frac{t}{R C}}$

The solution is
$Q(t) e^{\frac{t}{R C}}=\int \frac{V}{R} e^{\frac{t}{R C}} d t+A$

RC-circuit

The charge Q on the plate of a condenser C charged through a resistance R by a steady voltage V satisfies the differential equation.
$R \frac{d Q}{d t}+\frac{Q}{C}=V$, if $\mathrm{Q}=0$ at $\mathrm{t}=0$, show that $i=\frac{V}{R} e^{-\frac{t}{R C}}$
Solution
Given equation
$\frac{d Q}{d t}+\frac{Q}{R C}=\frac{V}{R}$
which is linear differential equation
I.F. $=e^{\int \frac{1}{R C} d t}=e^{\frac{t}{R C}}$

The solution is
$Q(t) e^{\frac{t}{R C}}=\int \frac{V}{R} e^{\frac{t}{R C}} d t+A$

RC-circuit

The charge Q on the plate of a condenser C charged through a resistance R by a steady voltage V satisfies the differential equation.
$R \frac{d Q}{d t}+\frac{Q}{C}=V$, if $\mathrm{Q}=0$ at $\mathrm{t}=0$, show that $i=\frac{V}{R} e^{-\frac{t}{R C}}$
Solution
Given equation
$\frac{d Q}{d t}+\frac{Q}{R C}=\frac{V}{R}$
which is linear differential equation
I.F. $=e^{\int \frac{1}{R C} d t}=e^{\frac{t}{R C}}$

The solution is
$Q(t) e^{\frac{t}{R C}}=\int \frac{V}{R} e^{\frac{t}{R C}} d t+A$

Initially
 $\mathrm{t}=0, \mathrm{Q}=0$

Initially
 $\mathrm{t}=0, \mathrm{Q}=0$

$\mathrm{A}=-\mathrm{CV}$

Initially
 $\mathrm{t}=0, \mathrm{Q}=0$

$A=-C V$
So $Q(t) e^{\frac{t}{R C}}=V C e^{\frac{t}{R C}} d t-C V$

> Initially
> $t=0, Q=0$
$A=-C V$
So $Q(t) e^{\frac{t}{R C}}=V C e^{\frac{t}{R C}} d t-C V$
$Q(t)=C V\left(1-e^{-\frac{t}{R C}}\right)$

Initially

$\mathrm{t}=0, \mathrm{Q}=0$
$A=-C V$
So $Q(t) e^{\frac{t}{R C}}=V C e^{\frac{t}{R C}} d t-C V$
$Q(t)=C V\left(1-e^{-\frac{t}{R C}}\right)$
$i(t)=\frac{d Q}{d t}=C V\left(\frac{1}{R C} e^{-\frac{t}{R C}}\right)$

Initially

$\mathrm{t}=0, \mathrm{Q}=0$
$A=-C V$
So $Q(t) e^{\frac{t}{R C}}=V C e^{\frac{t}{R C}} d t-C V$
$Q(t)=C V\left(1-e^{-\frac{t}{R C}}\right)$
$i(t)=\frac{d Q}{d t}=C V\left(\frac{1}{R C} e^{-\frac{t}{R C}}\right)$
$i(t)=\frac{V}{R} e^{-\frac{t}{R C}}$

