
Error Handling

Exception
•An exception is an error condition during a program

execution.
•PL/SQL supports programmers to catch such conditions

using EXCEPTION block in the program and an
appropriate action is taken against the error condition.

•There are two types of exceptions −
• System-defined exceptions
• User-defined exceptions / Predefined exceptions

Continued
•Exceptions are designed for run time error handling,

rather than compile time error handling.
Error type Reported by How handled

Compile –
time

PL/SQL compiler Interactively – compiler
reports errors, and you
have to correct them.

Runtime PL/SQL runtime
engine

Programmatically –
exceptions are raised
and caught by
exception handlers.

Syntax
DECLARE
 <declarations section>
BEGIN
 <executable command(s)>
EXCEPTION
 <exception handling goes
here >
 WHEN exception1 THEN
 exception1-handling-
statements

WHEN exception2 THEN
 exception2-handling-
statements
 WHEN exception3 THEN
 exception3-handling-
statements

 WHEN others THEN
 exception3-handling-
statements
END;

Example – divide by zero
 > DECLARE v_invalid INTEGER;
 > BEGIN
 > v_invalid := 100/0;
 > EXCEPTION
 > WHEN ZERO_DIVIDE THEN
 > DBMS_OUTPUT.PUT_LINE ('Attempt to divide by 0');
 > END;
 > /
Attempt to divide by 0

PL/SQL procedure successfully completed.

Example – Customer table
DECLARE
 c_id customers.id%type := 8;
 c_name customerS.Name%type;
 c_addr customers.address%type;
BEGIN
 SELECT name, address INTO
c_name, c_addr FROM
customers WHERE id = c_id;
 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);
 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION
 WHEN no_data_found THEN
 dbms_output.put_line('No such customer!');
 WHEN others THEN
 dbms_output.put_line('Error!');
END;

•When the above code is executed at the SQL prompt, it
produces the following result −

 No such customer!
PL/SQL procedure successfully completed.

System defined exception/
Predefined exception

Exception Description
ACCESS_INTO_NULL It is raised when a null object is automatically assigned a

value.

CASE_NOT_FOUND
It is raised when none of the choices in the WHEN clause
of a CASE statement is selected, and there is no ELSE
clause.

DUP_VAL_ON_INDEX It is raised when duplicate values are attempted to be
stored in a column with unique index.

INVALID_CURSOR
It is raised when attempts are made to make a cursor
operation that is not allowed, such as closing an
unopened cursor.

INVALID_NUMBER
It is raised when the conversion of a character string into
a number fails because the string does not represent a
valid number.

LOGIN_DENIED It is raised when a program attempts to log on to the
database with an invalid username or password.

Continued
ROWTYPE_MISMAT

CH
It is raised when a cursor fetches value
in a variable having incompatible data
type.

STORAGE_ERROR It is raised when PL/SQL ran out of
memory or memory was corrupted.

TOO_MANY_ROWS It is raised when a SELECT INTO
statement returns more than one row.

VALUE_ERROR
It is raised when an arithmetic,
conversion, truncation, or sizeconstraint
error occurs.

ZERO_DIVIDE It is raised when an attempt is made to
divide a number by zero.

User defined exception
PL/SQL allows you to define your own exceptions
according to the need of your program.
A user-defined exception must be declared and raised.

Syntax :

DECLARE
 my-exception EXCEPTION;

Example (table – customer)
DECLARE
 c_id customers.id%type := &cc_id;
 c_name customers.Name%type;
 c_addr customers.address%type;
 -- user defined exception
 ex_invalid_id EXCEPTION;
BEGIN
 IF c_id <= 0 THEN
 RAISE ex_invalid_id;
 ELSE
 SELECT name, address INTO c_name, c_addr
 FROM customers
 WHERE id = c_id;

DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);
 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);
 END IF;
EXCEPTION
 WHEN ex_invalid_id THEN
 dbms_output.put_line('ID must be greater than zero!');
 WHEN no_data_found THEN
 dbms_output.put_line('No such customer!');
 WHEN others THEN
 dbms_output.put_line('Error!');
END;

