
PL/SQL

Krishna Modi

Introduction
• PL/SQL is a combination of SQL along with the procedural

features of programming languages. It was developed by
Oracle Corporation in the early 90's to enhance the
capabilities of SQL.

Krishna Modi

Features of PL/SQL
• PL/SQL is tightly integrated with SQL.
• It offers extensive error checking.
• It offers numerous data types.
• It offers a variety of programming structures.
• It supports structured programming through functions and

procedures.
• It supports object-oriented programming.
• It supports the development of web applications and server

pages.Krishna Modi

Advantages of PL/SQL
• Applications written in PL/SQL are fully portable.
• PL/SQL provides high security level.
• PL/SQL provides access to predefined SQL packages.
• PL/SQL provides support for Object-Oriented Programming.
• PL/SQL provides support for developing Web Applications

and Server Pages.
• PL/SQL allows sending an entire block of statements to the

database at one time. This reduces network traffic and
provides high performance for the applications.

Krishna Modi

Generic pl/sql block
DECLARE
 <declarations section>
BEGIN
 <executable command(s)>
EXCEPTION
 <exception handling>
END;

Krishna Modi

S.No Sections & Description

1

Declarations
This section starts with the keyword DECLARE. It is an
optional section and defines all variables, cursors,
subprograms, and other elements to be used in the
program.

2

Executable Commands
This section is enclosed between the keywords BEGIN
and END and it is a mandatory section. It consists of the
executable PL/SQL statements of the program. It should
have at least one executable line of code, which may be
just a NULL command to indicate that nothing should be
executed.

3

Exception Handling
This section starts with the keyword EXCEPTION. This
optional section contains exception(s) that handle errors
in the program.

Krishna Modi

Delimiter Description

+, -, *, /
Addition,
subtraction/negation,
multiplication, division

% Attribute indicator
' Character string delimiter
. Component selector

(,) Expression or list delimiter
: Host variable indicator
, Item separator
" Quoted identifier delimiter
= Relational operator
@ Remote access indicator
; Statement terminator
:= Assignment operator
=> Association operator
|| Concatenation operator
** Exponentiation operator

<<, >> Label delimiter (begin and
end)

/*, */ Multi-line comment
delimiter (begin and end)

-- Single-line comment
indicator

Krishna Modi

Control structure
 IF condition THEN

sequence_of_statements
END IF;

Example:
IF x > y THEN high := x;
END IF;

IF condition THEN
 sequence_of_statements1
ELSE
 sequence_of_statements2
END IF;
Ex:
IF trans_type = 'CR' THEN
 UPDATE accounts SET balance = balance +
credit WHERE ...
ELSE
 UPDATE accounts SET balance = balance -
debit WHERE ...
END IF;Krishna Modi

If-then-else
IF condition1 THEN

sequence_of_statements
1
ELSIF condition2 THEN

sequence_of_statements
2
ELSE

sequence_of_statements
3
END IF

IF grade = 'A' THEN
 dbms_output.put_line('Excellent');
ELSIF grade = 'B' THEN
 dbms_output.put_line('Very Good');
ELSIF grade = 'C' THEN
 dbms_output.put_line('Good');
ELSIF grade = 'D' THEN
 dbms_output. put_line('Fair');
ELSIF grade = 'F' THEN
 dbms_output.put_line('Poor');
ELSE dbms_output.put_line('No such
grade');
END IF;

Krishna Modi

Example
Write a pl/sql code block that accept a client_no from the
user, check if the user bal_due is less than minimum balance
- 5000, only then deduct Rs. 100/- from the balance. The
process is fired on client_master table.

Krishna Modi

Solution
declare
 min_bal constant
number(8,2):=5000;
 bal_due1 client_master.bal_due
%type;
 client_no1 client_master.client_no
%type := ‘&client_no’;
begin
 select bal_due into bal_due1 from
client_master where
client_no=client_no1;
dbms_output.put_line('bal_due is....'
|| bal_due1);

if(bal_due1<min_bal)
Then

dbms_output.put_line('bal_due is
less than minimum balance');
 update client_master set
bal_due=bal_due- 100 where
client_no=client_no1;
 end if;
exception
 when no_data_found then
 dbms_output.put_line('Record
not found');
End;Krishna Modi

CASE statement
CASE selector
 WHEN 'value1' THEN S1;
 WHEN 'value2' THEN S2;
 WHEN 'value3' THEN S3;
 ...
 ELSE Sn; -- default case
END CASE;

DECLARE
 grade char(1) := 'A';
BEGIN
 CASE grade
 when 'A' then
dbms_output.put_line('Excellent');
 when 'B' then dbms_output.put_line('Very
good');
 when 'C' then dbms_output.put_line('Well
done');
 when 'D' then dbms_output.put_line('You
passed');
 when 'F' then dbms_output.put_line('Better
try again');
 else dbms_output.put_line('No such
grade');
 END CASE;
END;

Krishna Modi

Iterative control (loops)
Simple loop:
LOOP
 sequence_of_statements
END LOOP;

With each iteration of the
loop, the sequence of
statements is executed, then
control resumes at the top of
the loop.
 If further processing is
undesirable or impossible,
you can use an EXIT
statement to complete the
loop.
There are two forms of EXIT
statements: EXIT and EXIT-
WHEN.

Krishna Modi

Exit statement
The EXIT statement forces a
loop to complete
unconditionally.
When an EXIT statement is
encountered, the loop
completes immediately and
control passes to the next
statement.

LOOP
 ...
 IF credit_rating < 3 THEN
 ...
 EXIT; -- exit loop
immediately
 END IF;
END LOOP;
-- control resumes here

Krishna Modi

Exit statement
 EXIT statement must be placed
inside a loop.

BEGIN
 ...
 IF credit_rating < 3 THEN
 ...
 EXIT; -- not allowed
 END IF;
END;

Exit when condition;

If condition then exit;
End if;

Both are same

Krishna Modi

Exit-when
 The EXIT-WHEN statement
lets a loop complete
conditionally.
When the EXIT statement is
encountered, the condition in
the WHEN clause is
evaluated.
If the condition is true, the
loop completes and control
passes to the next statement
after the loop

 EXIT WHEN count > 100;
 is similar as
IF count > 100 THEN
count > 100;
 EXIT;
END IF;

Krishna Modi

Example
• Print 1 to 100 using loop.
• To calculate the areas of

circles of radius till 100
using PL/SQL.

create table mycircle (area
number(10), radius
number(2));

Declare
Area number(10);
Radius number(2) := 1;
Pi constant number(3,2):=3.14;
Begin
Loop
Area:=pi*power(radius,2);
Insert into mycircle values(area,radius);
Radius:=radius+1;
Exit when radius>10;
end loop;
end;

Krishna Modi

While loop
While condition
Loop

Sequence_of_statements;
End loop;

WHILE total <= 25000 LOOP
 ...
 SELECT sal INTO salary
FROM emp WHERE ...
 total := total + salary;
END LOOP;

Krishna Modi

PL/SQL Data types

Krishna Modi

PL/SQL Variables and Data Types

• Variable names must follow the Oracle naming
standard

• Strongly typed language:
• Explicitly declare each variable including data type before

using variable
• Variable declaration syntax:

• variable_name data_type_declaration;
• Default value always NULL
• PL/SQL supports: scalar, composite, reference and

LOB.

Krishna Modi

PL/SQL datatypes
• Scalar
• Composite
• reference
• LOB.

Krishna Modi

Scalar Variables
• Reference single value
• Data types correspond to Oracle 10g database data types

• VARCHAR2
• CHAR
• DATE
• NUMBER

Krishna Modi

General Scalar Data Types

Krishna Modi

Composite Variables
• Data Structure is a data object made up of

multiple individual data elements
• Composite variable is a data structure contains

multiple scalar variables
• Types:

• RECORD
• TABLE
• VARRAY

Krishna Modi

Reference Variables
• Reference variables directly reference specific

database column or row
• Reference variables assume data type of

associated column or row
• %TYPE data declaration syntax:

• variable_name tablename.fieldname%TYPE;
• %ROWTYPE data declaration syntax:

• variable_name tablename%ROWTYPE;

Krishna Modi

Reference Variables
• The (%TYPE) reference data type specifies a

variable that references a single DB field.
• current_f_last FACULTY.F_LAST%TYPE;

• The current_f_last variable assumes a data type
of VARCHAR2(30), because this is the data type
of the f_last column in the FACULTY table.

Krishna Modi

Reference Variables
• The (%ROWTYPE) reference data type creates

composite variables that reference the entire
data record.
• Faculty_row FACULTY%ROWTYPE;

• The variable faculty_row references all of the
columns in the FACULTY table, and each column
has the same data type as its associated DB
column.

Krishna Modi

LOB Data Types
• It declares variables that reference binary or

character data objects up to 4 GB.

• LOB values in PL/SQL programs must be
manipulated using special package called
DBMS_LOB.

Krishna Modi

User defined subtypes
Syntax:

Subtype newtype is originaltype

Ex:
Subtype loopcounter is number;

Krishna Modi

Cursor

Krishna Modi

Cursor
• Oracle creates a memory area, known as the context area,

for processing an SQL statement, which contains all the
information needed for processing the statement; for
example, the number of rows processed, etc.

• A cursor is a pointer to this context area.

Krishna Modi

Types of cursor
• Implicit cursor
• Explicit Cursor

Krishna Modi

Implicit cursor
• Implicit cursors are automatically created by Oracle whenever an

SQL statement is executed.
• Whenever a DML statement (INSERT, UPDATE and DELETE) is

issued, an implicit cursor is associated with this statement. For
INSERT operations, the cursor holds the data that needs to be
inserted. For UPDATE and DELETE operations, the cursor
identifies the rows that would be affected.

• In PL/SQL, you can refer to the most recent implicit cursor as
the SQL cursor, which always has attributes such as %FOUND,
%ISOPEN, %NOTFOUND, and %ROWCOUNT.

Krishna Modi

S.No Attribute & Description

1

%FOUND
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more
rows or a SELECT INTO statement returned one or more rows. Otherwise, it returns
FALSE.

2
%NOTFOUND
The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE
statement affected no rows, or a SELECT INTO statement returned no rows.
Otherwise, it returns FALSE.

3
%ISOPEN
Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor
automatically after executing its associated SQL statement.

4

%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement,
or returned by a SELECT INTO statement.

Krishna Modi

Example : Implicit cursor and
attributes

DECLARE
 total_rows number(2);
BEGIN
 UPDATE customers
 SET salary = salary + 500;

IF sql%notfound THEN
 dbms_output.put_line('no customers
selected');
 ELSIF sql%found THEN
 total_rows := sql%rowcount;
 dbms_output.put_line(total_rows || '
customers selected ');
 END IF;
END;
/

Krishna Modi

Explicit cursor
• Explicit cursors are programmer-defined cursors for

gaining more control over the context area.
• An explicit cursor should be defined in the declaration

section of the PL/SQL Block.
• It is created on a SELECT Statement which returns more

than one row.

Krishna Modi

Processing Explicit cursor
1. Declare the cursor
2. Open the cursor for the query
3. Fetch the cursor into pl/sql variables
4. Close the cursor

Krishna Modi

Declaring the Cursor
CURSOR c_customers IS
 SELECT id, name, address FROM customers;

Opening the Cursor
OPEN c_customers;

Krishna Modi

Fetching the Cursor
FETCH c_customers INTO c_id, c_name, c_addr;

Closing the cursor

CLOSE c_customers;

Krishna Modi

Example – Explicit Cursor
declare
 v_client_no client_master.client_no%type;
 v_name CLIENT_MASTER.NAME%type;
 v_city client_master.city%type;

 v_state client_master.state%type:='Maharashtra';

 cursor C_client_master is select client_no,name,
city from client_master where state=v_state;
begin
open c_client_master;

loop
 fetch c_client_master into
v_client_no,v_name,v_city ;

dbms_output.put_line(v_client_no||'
'||v_name||' '||v_city);
 exit when
c_client_master%notfound;
end loop;

close c_client_master;
end;

Krishna Modi

