
Quiz for Ch.10

Source: http://upload.wikimedia.org/wikipedia/commons/e/e7/Call_stack_layout.png

Can you see why it 

make sense for the 

parameters to be 

stacked below (before) 

the return address?



Quiz on Ch.10 (Flags and codes pp.378-9)

• Why does the x86 instruction set have 
two classes of comparison codes?

— G, L, GE, LE, 

— A (above), B (below), AE, BE

• Explain the following line of the table 
10.10/379:



William Stallings 

Computer Organization 

and Architecture

8
th

Edition

Chapter 11

Instruction Sets:

Addressing Modes and Formats



Addressing Modes

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement (Indexed) 

• Stack

• What is Effective Address (EA)?



Immediate Addressing Diagram

OperandOpcode

Instruction



Immediate Addressing

• Operand is part of instruction

• Operand = operand field

• e.g. ADD 5

—Add 5 to contents of accumulator

—5 is the operand

• No memory reference to access data

• Fast

• Range of operands limited to # of bits in 
operand field (< word size)



Direct Addressing Diagram

Address AOpcode

Instruction

Memory

Operand



Direct Addressing

• Address field contains address of operand

• Effective address (EA) = address field (A)

• e.g.  ADD A

—Add contents of cell A to accumulator

—Look in memory at address A for operand

• Single memory reference to access data

• No additional calculations to work out 
effective address

• Range of addresses limited by # of bits in 
A (< word length)



Indirect Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Pointer to operand



Indirect Addressing

• Memory cell pointed to by address field 
contains the address of (pointer to) the 
operand

• EA = (A)

—Look in A, find address (A) and look there for 
operand

• e.g. ADD (A)

—Add contents of cell pointed to by contents of 
A to accumulator



Indirect Addressing

• Advantage: Large address space 

—2n where n = word length

• Disadvantage: Multiple memory accesses 
to find operand slower

• May be nested, multilevel, cascaded

—e.g. EA = (((A)))

– Draw the diagram!



Register Addressing Diagram

Register Address ROpcode

Instruction

Registers, in CPU

Operand



Register Addressing

• Operand is held in register named in 
address filed

• EA = R

Advantages: 

• Very small address field

—Shorter instructions

—Faster instruction fetch

• Faster memory access to operand(s)



Register Addressing

Disadvantage:

• Very limited address space

• Multiple registers helps performance

—Requires good assembly programming or 
compiler writing

—C language has a dedicated keyword: 

register int a;



Register Indirect Addressing Diagram

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers, in CPU



Register Indirect Addressing

• C.f. indirect addressing

• EA = (R)

• Operand is in memory cell pointed to by 
contents of register R

Comparison with (memory) indirect:

• Same large address space (2n)

• One less memory access!



Displacement Addressing Diagram

Register ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Address A

+



Displacement Addressing

• EA = A + (R)

• Address field holds two values

—A = base value

—R = register that holds displacement

—or vice versa

• Has many versions, of which we mention 
these 3:

—Relative

—Base-register

—Indexing



Relative (to PC) Addressing

It’s a version of displacement addressing

• R = Program counter, PC

• EA = A + (PC)

—The operand is A cells away from the current 
cell (the one pointed to by PC)

• Remember:

—locality of reference

—cache usage



Base-Register Addressing

It’s a version of displacement addressing

It’s a generalized relative addressing, where 
other registers can play the role of PC

• A holds displacement

• R holds pointer to base address

• EA = A + (R)

—R may be explicit or implicit

• E.g. six segment registers in 80x86: 

CS, DS, ES, FS, GS, SS



Indexed Addressing

It’s a version of displacement addressing

Very similar to base-register addressing

• A = base

• (R) = displacement

• EA = A + (R), but roles are reversed!

• Good for accessing arrays

R++

—Autoindexing: the 
incrementations/decrementation is performed 
in the same instruction cycle!



Combinations

• Postindex: EA = (A) + (R)

— First use A as direct addressing at address 
A we find an address A1.

— ―Index‖ A1 based on R add A1 to the 
content of R

• Preindex: EA = (A+(R))

Draw the diagrams!



Stack Addressing

• Operand is (implicitly) on top of the stack

• E.g. ADD

—Pop top two items from stack

—Add them

—Push result on top of stack



Review:

What addressing mode is used in the x86 
instruction

MOV EAX  42



Review:

What addressing modes were used in the 
IAS instruction set?

See next slides …



The IAS instruction set

There was no assembly language back then!Specifies one of 21 instructions



IAS – instruction set (continued)

Self-modification of code, but it was done to “simulate” 

today’s indirect and displacement addressing



We covered section 11.1 of the text. Please 
read carefully, it’s very important!

Solve in notebook end-of-chapter:

• Review questions 1-11

• Problem 1



Detour: Ch.8, Section 8.4: 

Two ways to subdivide physical memory 

in Intel x86: paging and segmentation

• Paging is invisible to the programmer. We 
cover it in CS 380 (Operating Systems)

• Segmentation is usually visible to the 
programmer. It provides:

—Convenience for organizing programs and data

—A means to implement privilege and protection 
mechanisms for processes

—Help for identifying bugs during program 
development



From Ch.8, Section 8.4: 

Two ways to subdivide physical memory: 

paging and segmentation

• Pentium II includes hardware for both paging 
and segmentation. Each mechanism can be 
enabled separately, resulting in 4 modes:

— unsegmented unpaged

— unsegmented paged a.k.a. page-protected

— segmented unpaged a.k.a. segment-protected

— segmented paged a.k.a. protected



Pentium II Complete Address Translation 

Mechanism (segmentation + paging)

When paging is not used, the linear address is placed directly on the memory bus

EA



Pentium II Segmentation

• Each virtual address is 16-bit segment 
and 32-bit offset

• 2 bits of segment are protection 
mechanism

• 14 bits specify segment

• Unsegmented virtual memory 232 = 
4Gbytes

• Segmented 246=64 terabytes

—Can be larger – depends on which process is 
active

—Half (8K segments of 4Gbytes) is global

—Half is local and distinct for each process



Pentium II Segment Selector + Table

Segment selector = 2 Byte

Segment descriptor = 8 Byte

Source for images: http://users.evtek.fi/~tk/rtos/TSS/protmode.htm

First part of 

virtual address, 

stored in a 

segment register

Segment table 

entry



Pentium II Protection

• Protection bits give 4 levels of privilege

—0 most protected, 3 least

—Use of levels software dependent

—Usually level 3 for applications, level 1 for O/S 
and level 0 for kernel (level 2 not used)

—Level 2 may be used for apps that have 
internal security e.g. database

—Some instructions only work in level 0 (used 
for OS for memory management)



Pentium II Address Translation – Segmentation 

only

End Ch.8
Source for image: http://users.evtek.fi/~tk/rtos/TSS/protmode.htm



11.2   x86 Addressing Modes

The effective address (EA in section 11.1) is 
the virtual address, and used as offset 
into a segment

—Starting address plus offset gives linear 
address

—This then goes through page translation if 
paging is enabled



x86 Addressing Mode Calculation



x86 Addressing Mode Calculation

Which segment register is used?

Determined by:

• instruction itself (e.g. stack-related instructions use SS)

• context of execution (e.g. in a multi-process environment, a certain 

process is assigned a certain Segment Register by the OS)



x86 Addressing Modes

12 addressing modes:

—Immediate (Byte, word, doubleword)

—Register operand (8, 16, 32 and 64-bit registers)

—Displacement

—Base

—Base with displacement

—Scaled index with displacement

—Base with index and displacement

—Base scaled index with displacement

—Relative

Operands

in memory



x86  Registers

Source for image: http://www.cs.virginia.edu/~evans/cs216/guides/x86.html x86 Assembly Guide

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html


x86 Addressing Modes – operand in memory

—Displacement: EA contained in instruction
– 8, 16 or 32 bit

– Can lead to long instructions, esp. for 32 bit!

– Can be used to reference global variables

—Base

—Base with displacement

—Scaled index with displacement

—Base with index and displacement

—Base scaled index with displacement

—Relative

indirect

addressing

A segment register is used for all except relative (PC)



x86 Addressing Modes

Register indirect

Local variables,

ASCII strings

Arrays

2D Arrays of 

characters

2D Arrays

Branch



SKIP  ARM Addressing Modes



We covered sections 8.4 (Only 
segmentation, not paging) and 11.2 of the 
text. Please read carefully, it’s very 
important!

Solve in notebook end-of-chapter 11 
problems:

• 2, 3, 4, 8



Quiz: Problem 11.5 / 429



11.3 Instruction Formats

• Format = Layout of bits in an instruction

• Includes opcode

• Includes (implicit or explicit) operand(s)

—Zero or more

• Usually more than one instruction format 
in an instruction set



Instruction Length

• Affected by and affects:

—Memory size

—Memory organization

—Bus structure

—CPU complexity

—CPU speed

• Trade-off between:

—Power of instructions

– Many opcodes, operands, addressing modes

– Greater address range

—Saving space

– Amount of memory used to store a program

– # of fetch and get cycles



Instruction Length

• Granularity:

—Instruction length should be an integer 
multiple of the word length

– Data types

– Bus width

—―No more 20-bit instructions, Dr. von 
Neumann!‖ 

—IBM System/360 started using 8-bit characters 
(EBCDIC!) and simultaneously the Byte-
addressable memory

– As opposed to the 7000 series, which had been 
accessing memory chunks of variable size at 
arbitrary bit addresses



Allocation of Bits

Determines:

• Number of addressing modes

• Number of operands

• Register versus memory

• Number of register sets, e.g. for x86:

—General-purpose

—Data (floating-point, MMX)

—Displacement (segment reg.)

• Address range

• Address granularity: bytes or words?



Allocation of Bits

Again, numerous trade-offs, e.g.

• # of opcodes vs. # of addresses (for a 
fixed-length instruction)

• Variable-length opcodes, but:

—Need more hardware

—Need ―prefix code‖ – see next slide



PEP Instructions have variable opcode length 

(not in our text)

51



Allocation of Bits

Another trade-off:

• # of register sets

• E.g. 64 ―flat‖ registers vs. four sets of 16 
6 bits vs. 4

• Can you think of a disadvantage?

Read the entire p.415 carefully!



Orthogonality

A computer's instruction set is said to be 
orthogonal if any instruction can use data of 
any type via any addressing mode.

Idea: Specify the addressing mode in the operand, 
rather than the opcode

Advantage … Disadvantage … 

The DEC PDP-11 and Motorola 68000 computer 
architectures are examples of nearly orthogonal 
instruction sets, while the ARM11 and VAX are 
examples of CPUs with fully orthogonal 
instruction sets. [Source: Orthogonal instruction set - Wikipedia]

http://en.wikipedia.org/wiki/Orthogonal_instruction_set
http://en.wikipedia.org/wiki/Orthogonal_instruction_set
http://en.wikipedia.org/wiki/Orthogonal_instruction_set
http://en.wikipedia.org/wiki/Orthogonal_instruction_set


Text reading assignment:

The remainder of section 11.3 (pp.416-421)

Take notes only about orthogonality!



11.4  x86 Instruction Format

Total Byte-long 

prefixes: 0 to 4

Optional address 

specifier



X86

Instruction

Prefix

Two functions:

• LOCK restricts other instructions’ use of shared memory

• REPEAT repeated operation on a string, e.g.

• REP means that the operation is performed a number of 

times specified by register CX (C on 16 bit)



LOCK prefix

• Only meaningful in multi-threading and multi-processor 
applications

• Can be used only with the following instructions (and to 
those forms of the instructions that use a memory operand: 
ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, DEC, INC, 
NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG.

• An undefined opcode exception will be generated if the 
LOCK prefix is used with any other instruction.

• The XCHG instruction always asserts the LOCK# signal 
regardless of the presence or absence of the LOCK prefix.

Hardware signal 

in the Intel CPU



X86

Instruction

Format

Operand is in register 

or memory?

Which register?



Read an take notes: pp.422-423

SKIP ARM Instruction Formats



Quiz on instruction formats

Problem 11.16/431

• Hint: Assume that there are no 3- or 
more-operand instructions



11.5  What does the assembler do?

Computers store and ―understand‖ binary 
instructions, a.k.a. machine code

Example: Calculate N= I + J + K

• Program starts in memory location 101 (hex)

• Data starts at 201 (hex)

• Code:

—Load  contents of 201 into AC

—Add   contents of 202 to    AC

—Add   contents of 203 to    AC

—Store contents of AC  to    204

• See machine code on next slide



Program in binary (Fig. 11.3(a) is messed up in text!)

Do you see the opcodes?

How many bits/Bytes are 

there at any memory 

address?



Improvement: convert binary to hex

Address Contents Address Contents

101 0010 0010 0000 0001 101 2201

102 0001 0010 0000 0010 102 1202

103 0001 0010 0000 0011 103 1203

104 0011 0010 0000 0100 104 3204

………

201 0000 0000 0000 0010 201 0002

202 0000 0000 0000 0011 202 0003

203 0000 0000 0000 0100 203 0004

204 0000 0000 0000 0000 204 0000



Use symbolic names (a.k.a. mnemonics) for 

instructions

Address Instruction

101 LDA 201

102 ADD 202

103 ADD 203

104 STA 204

201 DAT 2

202 DAT 3

203 DAT 4

204 DAT 0

Rules:

—Three fields per line

—Location address

—Three letter opcode

—If memory reference: use address in hex

Problem!



Symbolic Addresses!

Label Operation Operand

FORMUL LDA I

ADD J

ADD K

STA N

I DATA 2

J DATA 3

K DATA 4

N DATA 0



• Need an assembler to translate from 
assembly to machine code

• Assembler are still used for some systems 
programming:

—Compilers

—I/O routines



Homework for Ch.11

Due Thu, Nov 25

End-of-chapter 11 problems:

• 6

• 7

• 11

• 13

• 20


