Unit – 3 Adders

ADDERS

 \triangleright

In electronics, an **adder** or **summer** is a digital circuit that performs addition of numbers.

 \triangleright

In modern computers adders reside in the arithmetic logic unit (ALU) where other operations are performed.

 \succ

Although adders can be constructed for many numerical representations, such as Binary-coded decimal or excess-3, the most common adders operate on binary numbers.

\succ

In cases where two's complement or one's complement is being used to represent negative numbers, it is trivial to modify an adder into an adder-subtractor.

Other signed number representations require a more complex adder.

HALF ADDER

 \triangleright

A half adder adds two one-bit binary numbers A and B.

It has two outputs, S and C (the value theoretically carried on to the next addition); the final sum is 2C + S.

The simplest half-adder design, pictured on the right, incorporates an XOR gate for *S* and an AND gate for *C*.

Half adders cannot be used compositely, given their incapacity for a carry-in bit.

X_0	Y_0	Z_0	C_1
0	0	0	0
0	I	I	0
1	0	I	0
1	I	0	I

C=AB

IICT, Indus University

Unit – 3 Adders

FULL ADDER

 \geq

 \triangleright

When more than two binary digits are to be added, several half – adders will not be adequate, for the half – adder has no input to handle carries from other digits.

A **full adder** adds binary numbers and accounts for values carried in as well as out.

A one-bit full adder adds three one-bit numbers, often written as A, B, and C_{in} ; A and B are the operands, and C_{in} is a bit carried in (in theory

from a past addition). The circuit produces a two-bit output sum typically represented by the signals C_{out} and S, where sum = 2 X C_{out} + S.

The one-bit full adder's truth table is:

$S = \overline{X}\overline{Y}Ci + \overline{X}Y\overline{C}i + X\overline{Y}\overline{C}i + XYCi$

Input			Output	
Х	γ	C _i	S	C _o
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Co = XCi + XY + YCi

