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THE ANATOMY OF CLOUD INFRASTRUCTURES 

This chapter focuses on the subject of IaaS clouds and, more specifically, on 
the efficient management of virtual machines in this type of cloud. There 
are many commercial IaaS cloud providers in the market, such as those cited 
earlier, and all of them share five characteristics:  

 

(i) They provide on-demand provisioning of computational resources;  

(ii) they use virtualization technologies to lease these resources;  

(iii) they provide public and simple remote interfaces to manage those 
resources;  

(iv) they use a pay-as-you-go cost model, typically charging by the hour;  

(v) they operate data centers large enough to provide a seemingly unlimited 
amount of resources to their clients (usually touted as “infinite capacity” or 
“unlimited elasticity”).  

 

Private and hybrid clouds share these same characteristics, but instead of 
selling capacity over publicly accessible interfaces, focus on providing 
capacity to an organization’s internal users. 



THE ANATOMY OF CLOUD INFRASTRUCTURES 

Virtual Infrastructure (VI) management—the management of virtual 
machines distributed across a pool of physical resources—becomes a key 
concern when building an IaaS cloud and poses a number of challenges. 

• In traditional physical resources, virtual machines require a fair amount of 
configuration, including preparation of the machine’s software environment 
and network configuration. 

• In a virtual infrastructure, this configuration must be done on-the-fly, with as 
little time between the time the VMs are requested and the time they are 
available to the users. 

• This is further complicated by the need to configure groups of VMs that will 
provide a specific service (e.g., an application requiring a Web server and a 
database server). 

• Additionally, a virtual infrastructure manager must be capable of allocating 
resources efficiently, taking into account an organization’s goals (such as 
minimizing power consumption and other operational costs) and reacting to 
changes in the physical infrastructure. 

 

 



THE ANATOMY OF CLOUD INFRASTRUCTURES 

• Virtual infrastructure management in private clouds has to deal 
with an additional problem: 

• Unlike large IaaS cloud providers such as Amazon, private clouds 
typically do not have enough resources to provide the illusion of 
“infinite capacity.” 

• The immediate provisioning scheme used in public clouds, where 
resources are provisioned at the moment they are requested, is 
ineffective in private clouds. 

• Support for additional provisioning schemes  is required  for 
applications that require resources at specific times, such as best-
effort provisioning and advance reservations to guarantee 
quality of service (QoS). 

• Thus, efficient resource allocation algorithms and policies and the 
ability to combine both private and public cloud resources, resulting 
in a hybrid approach, become even more important. 

 

 



THE ANATOMY OF CLOUD INFRASTRUCTURES 

Managing virtual infrastructures in a private/hybrid cloud is a different 
problem than managing a virtualized data center, and existing tools lack 
several features that are required for building IaaS clouds. 

• Traditional methods can only operate with some preconfigured placement 
policies, which are generally simple (round robin, first fit, etc.) and based only 
on CPU speed and utilization of a fixed and predetermined number of 
resources, such as memory and network bandwidth.  

• Thus, there are still several gaps in existing VI solutions. Filling these gaps 
will require addressing a number of research challenges such as virtual 
machine management, resource scheduling, SLAs, federation of 
resources, and security. 

• In this chapter, we focus on three problems addressed by the Virtual 
Machine Management Activity of RESERVOIR (Resources and Services 
Virtualization without Barriers), an European Union FP7-funded project : 

• Distributed management of virtual machines,  

• Reservation-based provisioning of virtualized resources, and  

• Provisioning to meet SLA commitments. 



Distributed Management of Virtual Machines 

• The problem of efficiently selecting or scheduling computational 

resources is well known. However, the state of the art in VM-based 

resource scheduling follows a static approach, where resources 

are initially selected using a greedy allocation strategy, with minimal 

or no support for other placement policies. 

• To efficiently schedule resources, VI managers must be able to 

support flexible and complex scheduling policies and must 

leverage (use) the ability of VMs to suspend, resume, and migrate. 

• This complex task is one of the core problems that the 

RESERVOIR project tries to solve. The problem of how to manage 

VMs distributed across a pool of physical resources will be 

described. OpenNebula, the virtual infrastructure manager 

developed by the RESERVOIR project will be explained later. 

 

 



Reservation-Based Provisioning of Virtualized Resources 

• A particularly interesting problem when provisioning virtual 
infrastructures is how to deal with situations where the 
demand for resources is known beforehand—for example, 
when an experiment depending on some complex piece of 
equipment is going to run from 2 pm to 4 pm, and 
computational resources must be available at exactly that time 
to process the data produced by the equipment. 

• Commercial clouds do have infinite resources to handle this 
situation. On the other hand, when dealing with finite 
capacity, a different approach is needed. However, the 
intuitively simple solution of reserving the resources 
beforehand is not so simple, because it is known to cause 
resources to be underutilized, due to the difficulty of 
scheduling other requests around an inflexible reservation. 

 



Provisioning to Meet SLA Commitments 

• IaaS clouds can be used to deploy services that will be consumed 

by users other than the one that has deployed the services. 

• There is a distinction between the cloud consumer (i.e., the 

service owner; for instance, the company that develops and 

manages the applications) and the end users of the resources 

provisioned on the cloud (i.e., the service user; for instance, the 

users that access the applications). 

• Furthermore, service owners will enter into service-level 

agreements (SLAs) with their end users, covering guarantees 

such as the timeliness with which these services will respond. 

• Requirements are formalized in infrastructure SLAs between the 

service owner and cloud provider, separate from the high-level 

SLAs between the service owner and its end users. 

 



Provisioning to Meet SLA Commitments 

• In many cases, either the service owner is not resourceful 

enough to perform an exact service sizing or service 

workloads are hard to anticipate in advance. 

• Therefore, to protect high-level SLAs, the cloud provider 

should cater for elasticity on demand.  

• Scaling and de-scaling of an application is best managed 

by the application itself. The reason is that in many cases, 

resource allocation decisions are application-specific and 

are being driven by the application level metrics.  



Provisioning to Meet SLA Commitments 

RESERVOIR proposes a flexible framework where service owners may 
register service-specific elasticity rules and monitoring probes, and 
these rules are being executed to match environment conditions.  

 

The elasticity of the application should be contracted and formalized as 
part of the SLA between the cloud provider and service owner. 

  

This poses interesting research issues on the IaaS side, which can 
be grouped around two main topics: 

• SLA-oriented capacity planning that guarantees that there is enough 
capacity to guarantee service elasticity. 

• Continuous resource placement and scheduling optimization that 
lowers operational costs and takes advantage of available capacity 
transparently to the service while keeping the service SLAs. 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

• Managing VMs in a pool of distributed physical resources 

is a key concern in IaaS clouds, requiring the use of a 

virtual infrastructure manager. 

• OpenNebula is capable of managing groups of 

interconnected VMs—with support for the Xen, KVM, and 

VMWare platforms—within data centers and private 

clouds that involve a large amount of virtual and physical 

servers. 

• OpenNebula can also be used to build hybrid clouds by 

interfacing with remote cloud sites. 

 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Model and Life Cycle 

• The primary target of OpenNebula is to manage VMs. Within 

OpenNebula, a VM is modeled as having the following 

attributes: 

• A capacity in terms of memory and CPU. 

•  A set of NICs attached to one or more virtual networks. 

•  A set of disk images. In general it might be necessary to 

transfer some of these image files to/from the physical 

machine the VM will be running in. 

•  A state file (optional) or recovery file that contains the 

memory image of a running VM plus some hypervisor-specific 

information. 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Model and Life Cycle in OpenNebula 

The life cycle of a VM within OpenNebula follows several stages: 

• Resource Selection. Once a VM is requested to OpenNebula, a feasible 
placement plan for the VM must be made. OpenNebula’s default scheduler 
provides an implementation of a rank scheduling policy, allowing site 
administrators to configure the scheduler to prioritize the resources that are more 
suitable for the VM, using information from the VMs and the physical hosts. In 
addition, OpenNebula can also use the Haizea lease manager to support more 
complex scheduling policies. 

• Resource Preparation. The disk images of the VM are transferred to the target 
physical resource. During the boot process, the VM is contextualized, a process 
where the disk images are specialized to work in a given environment. For 
example, if the VM is part of a group of VMs offering a service (a compute cluster, 
a DB-based application, etc.), contextualization could involve setting up the 
network and the machine hostname, or registering the new VM with a service 
(e.g., the head node in a compute cluster). Different techniques are available to 
contextualize a worker node, including use of an automatic installation system (for 
instance, Puppet or Quattor), a context server, or access to a disk image with the 
context data for the worker node (OVF recommendation). 

• VM Termination. When the VM is going to shut down, OpenNebula can transfer 
back its disk images to a known location. This way, changes in the VM can be 
kept for a future use. 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Management 

OpenNebula manages a VMs life cycle by orchestrating three different management 
areas:  
1) virtualization by interfacing with a physical resource’s hypervisor, such as Xen, KVM, 
or VMWare, to control (e.g., boot, stop, or shutdown) the VM;  

 
2) image management by transferring the VM images from an image repository to the 
selected resource and by creating on-the-fly temporary images; and  

 
3) networking by creating local area networks (LAN) to interconnect the VMs and tracking 
the MAC addresses leased in each network. 

 

• Virtualization: OpenNebula manages VMs by interfacing with the physical resource 
virtualization technology (e.g., Xen or KVM) using a set of pluggable drivers that 
decouple the managing process from the underlying technology. Whenever the core 
needs to manage a VM, it uses high-level commands such as “start VM,” “stop VM,”. 

• Image Management:  VMs are supported by a set of virtual disks or images, which 
contains the OS and any other additional software needed by the VM. OpenNebula 
assumes that there is an image repository that can be any storage medium or service, 
local or remote, that holds the base image of the VMs. There are a number of different 
possible configurations depending on the user’s needs. For example, users may want all 
their images placed on a separate repository with only HTTP access. Alternatively, 
images can be shared through NFS between all the hosts. 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Management 

OpenNebula uses the following concepts for its image 

management model: 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Management 

• Image Repositories refer to any storage medium, local or remote, that 

hold the base images of the VMs. An image repository can be a dedicated 

file server or a remote URL from an appliance provider, but they need to be 

accessible from the OpenNebula front-end. 

 

• Virtual Machine Directory is a directory on the cluster node where a VM is 

running. This directory holds all deployment files for the hypervisor to boot 

the machine, checkpoints, and images being used or saved—all of them 

specific to that VM. This directory should be shared for most hypervisors to 

be able to perform live migrations. Any given VM image goes through the 

following steps along its life cycle: 

 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Management 

Preparation implies all the necessary changes to be made to the 
machine’s image so it is prepared to offer the service to which it is 
intended. OpenNebula assumes that the images that conform to a 
particular VM are prepared and placed in the accessible image 
repository. 

Cloning the image means taking the image from the repository and 
placing it in the VM’s directory in the physical node where it is going 
to be run before the VM is actually booted. If a VM image is to be 
cloned, the original image is not going to be used, and thus a copy 
will be used. There is a qualifier (Clone) for the images that can 
mark them targeting for cloning or not.  

Save/Remove if the save qualifier is disabled, once the VM has 
been shutdown, the images and all the changes thereof are going 
to be disposed of. However, if the save qualifier is activated, the 
image will be saved for later use. 



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Management 

• Networking. Services deployed on a cloud, from a computing 
cluster to the classical three-tier business application, require 
several interrelated VMs, with a Virtual Application Network 
(VAN) being the primary link between them. OpenNebula 
dynamically creates these VANs and tracks the MAC 
addresses leased in the network to the service VMs. Other 
TCP/IP services such as DNS, NIS, or NFS are the 
responsibility of the service. 

• The physical hosts that will co-form the fabric of our virtual 
infrastructures well need to have some constraints in order to 
effectively deliver virtual networks to our virtual machines.  
Therefore, from the point of view of networking, a physical 
cluster is defined as a set of hosts with one or more network 
interfaces, each of them connected to a different physical 
network.  



DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES 

VM Management 

Three different VANs can be 
distinguished as follows: 

• One is mapped on top of the 
public Internet network, and we 
can see a couple of virtual 
machines taking advantage of it. 
Therefore, these two VMs will 
have access to the Internet.  

• The other two are mapped on top 
of the private physical network: 
The Red and Blue VANs. Virtual 
machines connected to the same 
private VAN will be able to 
communicate with each other, 
otherwise they will be isolated and 
won’t be able to communicate. 



SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY 

• While a VI manager like OpenNebula can handle all the minutiae of managing VMs 

in a pool of physical resources, scheduling these VMs efficiently is a different and 

complex matter.  

• Immediate provisioning model is used by commercial cloud providers, such as 

Amazon, since their data centers’ capacity is assumed to be infinite. 

• Best-effort provisioning where requests have to be queued and prioritized  

• Advance provisioning where resources are pre-reserved so they will be 

guaranteed to be available at a given time period.  

• However, when managing a private cloud with limited resources, an 

immediate provisioning model is insufficient. A lease-based resource 

provisioning model that can act as a scheduling back-end for OpenNebula, 

supporting other provisioning models other than the immediate 

provisioning models in existing cloud providers. In particular, Haizea 

adds support for both best-effort provisioning and advance reservations, 

when managing a finite number of resources. 



SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY 

Existing Approaches to Capacity Reservation 

• Efficient reservation of resources in resource management systems has been 

studied considerably, particularly in the context of job scheduling. 

• In fact, most modern job schedulers support advance reservation of 

resources, but their implementation falls short in several aspects. 

• First of all, they are constrained by the job abstraction; when a user makes an 

advance reservation in a job-based system, the user does not have direct and 

unfettered access to the resources. Cloud users can access the VMs they 

requested, and are allowed to submit jobs to them. 

• Example-1: PBS Pro creates a new queue that will be bound to the reserved 

resources, guaranteeing that jobs submitted to that queue will be executed on 

them (assuming they have permission to do so) 

• Example-2: Maui and Moab, simply allow users to specify that a submitted job 

should use the reserved resources (if the submitting user has permission to do 

so).  

 



SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY 

Existing Approaches to Capacity Reservation 

• Additionally, advance reservations lead to utilization problems [10,13], 

caused by the need to vacate resources before a reservation can begin.  

• Traditional job schedulers are unable to efficiently schedule workloads 

combining both best-effort jobs and advance reservations. 

• However, advance reservations can be supported more efficiently by using a 

scheduler capable of preempting running jobs at the start of the 

reservation and resuming them at the end of the reservation.  

• Preemption can also be used to run large parallel jobs (which tend to have 

long queue times) earlier, and it is specially relevant in the context of urgent 

computing, where resources have to be provisioned on very short notice and 

the likelihood of having jobs already assigned to resources is higher.  

• While preemption can be accomplished by canceling a running job, the least 

disruptive form of preemption is check pointing, where the preempted job’s 

entire state is saved to disk, allowing it to resume its work from the last 

checkpoint. 



SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY 

Existing Approaches to Capacity Reservation 

• Additionally, some schedulers also support job migration, allowing check-
pointed jobs to restart on other available resources, instead of having to wait 
until the preempting job or reservation has completed. 

• Check-pointing-based preemption, requires the job’s executable itself to be 
checkpointable. An application can be made checkpointable by explicitly 
adding that functionality to an application (application-level and library-level 
checkpointing) OR transparently by using OS-level checkpointing, where the 
operating system (such as Cray, IRIX, and patched versions of Linux using 
BLCR [17]) checkpoints a process, without rewriting the program or relinking 
it with checkpointing libraries. 

• Thus, a job scheduler capable of checkpointing-based preemption and 
migration could be used to checkpoint jobs before the start of an advance 
reservation, minimizing their impact on the schedule. 

• However, the application and library-level checkpointing approaches 
burden the user with having to modify their applications to make them 
checkpointable, imposing a restriction on the software environment. On the 
other hand, OS-level checkpointing is a more appealing option, but still 
imposes certain software restrictions on resource consumers. 



SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY 

Existing Approaches to Capacity Reservation 

• An alternative approach to supporting advance reservations was proposed by 

Nurmi et al. [18], which introduced “virtual advance reservations for 

queues” (VARQ).  

• This approach overlays advance reservations over traditional job 

schedulers by first predicting the time a job would spend waiting in a 

scheduler’s queue and then submitting a job (representing the advance 

reservation) at a time such that, based on the wait time prediction, the 

probability that it will be running at the start of the reservation is maximized. 

• Since no actual reservations can be done, VARQ jobs can run on 

traditional job schedulers, which will not distinguish between the regular 

best-effort jobs and the VARQ jobs.  

• Although this is an interesting approach that can be realistically implemented 

in practice (since it does not require modifications to existing scheduler), it 

still depends on the job abstraction. 



SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY 

Existing Approaches to Capacity Reservation 

• Hovestadt et al. [19, 20] proposed a planning-based (as opposed to 

queuing based) approach to job scheduling, where job requests are 

immediately planned by making a reservation (now or in the future), 

instead of waiting in a queue. 

• Thus, advance reservations are implicitly supported by a planning-

based system. Additionally, each time a new request is received, the 

entire schedule is reevaluated to optimize resource usage.  

• For example, a request for an advance reservation can be accepted 

without using preemption, since the jobs that were originally assigned to 

those resources can be assigned to different resources. 



SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY 

Reservations with VMs 

• Virtualization technologies are a key enabler of many features found in IaaS 
clouds. Virtual machines are also an appealing vehicle for implementing 
efficient reservation of resources due to: 

• Ability to be suspended,  

• Potentially migrated,  

• Resumed without modifying any of the applications running inside the VM. 

• However, virtual machines also raise additional challenges related to the 
overhead of using VMs: 
• Preparation Overhead. When using VMs to implement reservations, a VM disk 

image must be either prepared on-the-fly or transferred to the physical node 
where it is needed. Since a VM disk image can have a size in the order of 
gigabytes, this preparation overhead can significantly delay the starting time of 
leases. This delay may, in some cases, be unacceptable for advance 
reservations that must start at a specific time. 

• Runtime Overhead. Once a VM is running, scheduling primitives such as 
checkpointing and resuming can incur in significant overhead since a VM’s 
entire memory space must be saved to disk, and then read from disk. Migration 
involves transferring this saved memory along with the VM disk image. Similar to 
deployment overhead, this overhead can result in noticeable delays. 

 



The Haizea project 
http://haizea.cs.uchicago.edu/ 

• The Haizea project (http://haizea.cs.uchicago.edu/) was created to develop a 

scheduler that can efficiently support advance reservations efficiently by using the 

suspend/resume/migrate capability of VMs, but minimizing the overhead of using 

VMs. 

• The fundamental resource provisioning 

abstraction in Haizea is the lease, with 

three types of lease currently supported: 

•  Advanced reservation leases, where the 

resources must be available at a specific 

time. 

•  Best-effort leases, where resources are 

provisioned as soon as possible and 

requests are placed on a queue if 

necessary. 

•  Immediate leases, where resources are 

provisioned when requested or not at all. 



Haizea’s leasing model and the algorithms 

Leasing Model 

• when managing a private cloud with limited resources, an immediate provisioning 
model is insufficient. A lease-based resource provisioning model that can act 
as a scheduling back-end for OpenNebula, supporting other provisioning 
models other than the immediate provisioning models in existing cloud 
providers. In particular, Haizea adds support for both best-effort provisioning 
and advance reservations, when managing a finite number of resources.  
The remainder of this section describes Haizea’s leasing model and the 
algorithms Haizea uses to schedule these leases. 

 

• We define a lease as “a negotiated and renegotiable agreement between a 
resource provider and a resource consumer, where the former agrees to 
make a set of resources available to the latter, based on a set of lease 
terms presented by the resource consumer.” 

 

• The terms must encompass the following:  
• the hardware resources required by the resource consumer, such as CPUs, 

memory, and network bandwidth;  

• a software environment required on the leased resources;  

• and an availability period during which a user requests that the hardware and 
software resources be available.  



Haizea’s leasing model and the algorithms 

Leasing Model 

• We focus on the availability dimension of a lease and, in 

particular, on how to efficiently support advance 

reservations. Thus, we consider the following availability 

terms: 

• Start time may be unspecified (a best-effort lease) or specified (an 

advance reservation lease). In the latter case, the user may specify 

either a specific start time or a time period during which the lease 

start may occur. 

•  Maximum duration refers to the total maximum amount of time that 

the leased resources will be available. 

•  Leases can be preemptable. A preemptable lease can be safely 

paused without disrupting the computation that takes place inside 

the lease. 

 



Haizea’s leasing model and the algorithms 

Leasing Model 

• Haizea’s resource model considers that it manages W physical 
nodes capable of running virtual machines. Each node i has CPUs, 
megabytes (MB) of memory, and MB of local disk storage. 

• We assume that all disk images required to run virtual machines are 
available in a repository from which they can be transferred to 
nodes as needed and that all are connected at a bandwidth of B 
MB/sec by a switched network. 

• A lease is implemented as a set of N VMs, each allocated resources 
described by a tuple (p, m, d, b), where p is number of CPUs, m is 
memory in MB, d is disk space in MB, and b is network bandwidth in 
MB/sec. 

• A disk image I with a size of size (I) MB must be transferred from the 
repository to a node before the VM can start. When transferring a 
disk image to multiple nodes, we use multicasting and model the 
transfer time as size(I)/B. 



Haizea’s leasing model and the algorithms 

Leasing Model 

• If a lease is preempted, it is suspended by suspending its VMs, 

which may then be either resumed on the same node or 

migrated to another node and resumed there. 

 

• Suspending a VM results in a memory state image file (of size m that 

can be saved to either a local file system or a global file system 

(f ɛ {local, global}).  

• Resumption requires reading that image back into memory and then 

discarding the file.  

• Suspension of a single VM is done at a rate of s megabytes of VM 

memory per second, and we define r similarly for VM resumption. 



Haizea’s leasing model and the algorithms 

Lease Scheduling 

• Haizea is designed to process lease requests and determine how those 

requests can be mapped to virtual machines, leveraging their 

suspend/resume/migrate capability, in such a way that the leases’ 

requirements are satisfied. 

• The scheduling component of Haizea allow best-effort leases to be preempted 

if resources have to be freed up for advance reservation requests. 

• Additionally, to address the preparation and runtime overheads mentioned 

earlier, the scheduler allocates resources explicitly for the overhead activities 

(such as transferring disk images or suspending VMs) instead of assuming 

they should be deducted from the lease’s allocation. 

• Besides guaranteeing that certain operations complete on time (e.g., an image 

transfer before the start of a lease), the scheduler also attempts to minimize this 

overhead whenever possible, most notably by reusing disk image transfers 

and caching disk images on the physical nodes. 



Haizea’s leasing model and the algorithms 

Lease Scheduling –Best effort 

• Best-effort leases are scheduled using a queue. When a best-effort lease is 
requested, the lease request is placed at the end of the queue, which is 
periodically evaluated using a backfilling algorithm to determine if any leases 
can be scheduled.  

 

• The scheduler does this by first checking the earliest possible starting 
time for the lease on each physical node, which will depend on the required 
disk images. For example, if some physical nodes have cached the required 
disk image, it will be possible to start the lease earlier on those nodes. 

 

• Once these earliest starting times have been determined, the scheduler 
chooses the nodes that allow the lease to start  
the soonest. 

 

• The use of VM suspension/resumption allows the best-effort leases to be 
scheduled even if there are not enough resources available for their full 
requested duration.  

 

 



Haizea’s leasing model and the algorithms 

Lease Scheduling-Advanced reservation 

• Advance reservations, on the other hand, do not go through a queue, since 

they must start at either the requested time or not at all.  

• Thus, scheduling this type of lease is relatively simple, because it mostly involves 

checking if there are enough resources available during the requested interval.  

• However, the scheduler must also check if any associated overheads can be 

scheduled in such a way that the lease can still start on time.  

• For preparation overhead, the scheduler determines if the required images can 

be transferred on time. 

• These transfers are scheduled using an Earliest Deadline First (EDF) algorithm, 

where the deadline for the image transfer is the start time of the advance 

reservation lease.  

• For runtime overhead, the scheduler will attempt to schedule the lease without 

having to preempt other leases; if preemption is unavoidable. The necessary 

suspension operations are scheduled; if they can be performed on time. 



CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 

• If temporal behavior of services with respect to resource demands is highly 

predictable, then capacity can be efficiently scheduled using reservations. 

  

• In this section we focus on less predictable elastic workloads. For these 

workloads, exact scheduling of capacity may not be possible. Rather 

than that, capacity planning and optimizations are required. 

 

• IaaS providers perform two complementary management tasks:  

(1) Capacity planning to make sure that SLA obligations are met as contracted 

with the service providers and; 

(2) Continuous optimization of resource utilization in specific workload to make 

the most efficient use of the existing capacity.  



CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 

Infrastructure SLAs 

• IaaS can be regarded as a giant virtual hardware store, where 

computational resources such as virtual machines (VM), virtual 

application networks (VAN) and virtual disks (VD) can be ordered 

on demand in the matter of minutes or even seconds. 

• Chandra et al. [29] quantitatively study advantages of fine-grain 

resource allocation in a shared hosting platform. As this research 

suggests, fine-grain temporal and spatial resource allocation 

may lead to substantial improvements in capacity utilization. 

• Amazon EC2 [1] offers small, large, and extra large general-purpose 

VM instances and high-CPU, medium and extra large instances. It 

is possible that more instance types (e.g., I/O high, memory high, 

storage high, etc.) will be added in the future should a demand for 

them arise. Other IaaS providers—for example, GoGrid [3] and 

FlexiScale [4]—follow similar strategy. 



CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 

Infrastructure SLAs 

• Thus, to deploy a service on a cloud, a service provider orders 

suitable virtual hardware and installs its application software on it.  

• From the IaaS provider, a given service configuration is a virtual 

resource array of black box resources, which correspond to the 

number of instances of resource type.  

• For example, a typical three-tier application may contain ten 

general-purpose small instances to run Web front-ends, three 

large instances to run an application server cluster with load 

balancing and redundancy, and two large instances to run a 

replicated database. 

• A risk mitigation mechanism to protect user experience in the IaaS 

model is offered by infrastructure SLAs (i.e., the SLAs formalizing 

capacity availability) signed between service provider and IaaS 

provider. 
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Infrastructure SLAs 

• There is no universal approach to infrastructure SLAs. As the IaaS field 
matures and more experience is being gained, some methodologies may 
become more popular than others. Also some methods may be more suitable 
for specific workloads than other. There are three main approaches as follows. 

• No SLAs. This approach is based on two premises: (a) Cloud always has 
spare capacity to provide on demand, and (b) services are not QoS sensitive 
and can withstand moderate performance degradation. This methodology is 
best suited for the best effort workloads. 

• Probabilistic SLAs. These SLAs allow us to trade capacity availability for 
cost of consumption. Probabilistic SLAs specify clauses that determine 
availability percentile for contracted resources computed over the SLA 
evaluation period. The lower the availability percentile, the cheaper the 
cost of resource consumption. This type of SLA is suitable for small and 
medium businesses and for many enterprise grade applications. 

• Deterministic SLAs. These are, in fact, probabilistic SLAs where resource 
availability percentile is 100%. These SLAs are most stringent and difficult 
to guarantee. From the provider’s point of view, they do not admit capacity 
multiplexing. Therefore this is the most costly option for service providers, 
which may be applied for critical services. 
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Infrastructure SLAs 

• We will focus on probabilistic SLAs, however, because they represent the more 
interesting and flexible option and lay the foundation for the rest of discussion on 
statistical multiplexing of capacity.  

• Before we can proceed, we need to define the concept, elasticity rules, which are are 
scaling and de-scaling policies that guide transition of the service from one configuration 
to another to match changes in the environment. The main motivation for defining these 
policies stems from the pay-as-you-go billing model of IaaS clouds. The service owner is 
interested in paying only for what is really required to satisfy workload demands 
minimizing the over-provisioning overhead. There are three types of elasticity rules: 

• Time-driven: These rules change the virtual resources array in response to a 
timer event. These rules are useful for predictable workloads—for example, for 
services with well-known business cycles. 

•  OS Level Metrics-Driven: These rules react on predicates defined in terms of the 
OS parameters (see Amazon Auto-scaling Service). These auto-scaling policies are 
useful for transparently scaling and de-scaling services. The problem is, 
however, that in many cases this mechanism is not precise enough. 

•  Application Metrics-Driven: This is a unique RESERVOIR offering that allows an 
application to supply application-specific policies that will be transparently 
executed by IaaS middleware in reacting on the monitoring information supplied by 
the service-specific monitoring probes running inside VMs. 
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Infrastructure SLAs 

• For a single service, elasticity rules of all three types can be 
defined, resulting in a complex dynamic behavior of a service 
during runtime.  

• Assuming that a business day is divided into a number of 
usage windows, the generic template for probabilistic 
infrastructure SLAs is as follows: 

• For each Wi, and each resource type rj from the virtual 
resource array, capacity range 𝐶 = (𝑟𝑗

𝑚𝑖𝑛, 𝑟𝑗
𝑚𝑎𝑥) is available 

for the service with probability pi. 

• Probabilistically guaranteeing capacity ranges allows service 
providers to define its needs flexibly. For example, for business 
critical usage window, availability percentile may be higher than 
the regular or off-peak hours.  
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Policy-Driven Probabilistic Admission Control 

• The purpose of statistical admission control is to guarantee that 
there is enough capacity to find a feasible placement with 
given probability. This mean over-subscription with probabilistically 
guaranteed risk of violating SLAs. 

• Benefits of statistical multiplexing are well known. This is an 
extensively studied field in networking [30-32] and in the context of 
CPU and bandwidth allocation in shared hosting platforms 
Urgaonkar et al. [33]. 

• In this work [33], the resources were treated as contiguous, allowing 
infinitesimal capacity allocation. We generalize this approach by 
means of treating each (number of instances of resource i in the 
virtual resources array) as a random variable. 

• The virtual resources array is, therefore, a vector of random 
variables. Since we assume that each capacity range for each 
resource type is finite, both the average resource consumption 
rate and variance are computable in resource consumption for 
each service in terms of the capacity units for each resource type.  
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Policy-Driven Placement Optimization 

• Policy-driven placement optimization complements capacity 
planning and management by improving a given mapping of 
physical to virtual resources (e.g., VMs).  

• Efficient capacity planning with guaranteed minimal over-
provisioning is still an open research problem. 

• Policy-driven management is a management approach based on 
“if(condition) then(action)” rules defined to deal with the 
situations that are likely to arise [40]. 

• These policies serve as a basic building blocks for autonomic 
computing. 

• Partially the difficulties lie in hardness of solving multiple 
knapsacks or its more general version, the generalized 
assignment problem. Both problems are NP-hard in the strong 
sense. 
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Management Policies and Management Goals. 

• Management Policies and Management Goals. Policy-based 

management is an overused term. Therefore, it is, beneficial to define 

and differentiate our approach to policy-driven admission control and 

placement optimization in the more precise terms. 

• The overall optimality criteria of placement, however, are controlled by 

the management policies, which are defined at a higher level of 

abstraction than “if (condition)then(action)” rules. To avoid ambiguity, 

we term these policies management goals. 

• Management goals, such as “conserve power,” “prefer local 

resources over remote resources,” “balance workload,” “minimize 

VM migrations,” “minimize SLA non-compliance,” and so forth, 

have complex logical structures. 
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Business-Level Goals and Policies. 

• Since business goals are defined at such a high level of abstraction, 
a semantic gap exists between them and the ICT level management 
goals and policies. Bridging this gap is notoriously difficult. In this 
work we aim at narrowing this gap and aligning between the high-
level business management goals and ICT-level management 
policies by introducing the notion of Acceptable Risk Level (ARL) 
of capacity allocation congestion. 

• Intuitively, we are interested in minimizing the costs of capacity over-
provisioning.  

• From minimizing the cost of capacity over-provisioning, we are 
interested in maximizing yield (usage) of the existing capacity.  

• However, at some point, the conflicts (congestions) in capacity 
allocation may cause SLA penalties that is opposite to the 
advantages of yield maximization. 
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Infrastructure-Level Management Goals and Policies 

• In general, infrastructure-level management policies are derived from the business-level 
management goals. For example, consider our sample business level management goal 
to “reduce energy expenses by 30% in the next quarter.” 

• This broadly defined goal may imply, among other means for achieving it, that we 
systematically improve consolidation of VMs on physical hosts by putting excessive 
capacity into a low-power consumption mode. Thus, a site-wide ICT power 
conservation-level management policy may be formulated as: “minimize number of 
physical machines while protecting capacity availability SLAs of the application 
services.” 

 

• Another example, consider the business-level management goal: “Improve customer 
satisfaction by achieving more aggressive performance SLAs.” One possible policy 
toward satisfying this business-level goal may be formulated as:  

•  
“Balance load within the site in order to achieve specific average load per physical 
host.”  

• Another infrastructure-level management policy to improve performance is: “Minimize 
the number of VM migrations.” The rationale for this policy is that performance 
degradation necessarily occurs during VM migration. 

 

 


