
ON THE MANAGEMENT OF VIRTUAL MACHINES

FOR CLOUD INFRASTRUCTURES

By IGNACIO M. LLORENTE, RUBE´ N S. MONTERO, BORJA SOTOMAYOR,
DAVID BREITGAND, ALESSANDRO MARASCHINI, ELIEZER LEVY, and
BENNY ROCHWERGER

Prepared by: Dr. Faramarz Safi

Islamic Azad University, Najafabad Branch,

Esfahan, Iran.

THE ANATOMY OF CLOUD INFRASTRUCTURES

This chapter focuses on the subject of IaaS clouds and, more specifically, on
the efficient management of virtual machines in this type of cloud. There
are many commercial IaaS cloud providers in the market, such as those cited
earlier, and all of them share five characteristics:

(i) They provide on-demand provisioning of computational resources;

(ii) they use virtualization technologies to lease these resources;

(iii) they provide public and simple remote interfaces to manage those
resources;

(iv) they use a pay-as-you-go cost model, typically charging by the hour;

(v) they operate data centers large enough to provide a seemingly unlimited
amount of resources to their clients (usually touted as “infinite capacity” or
“unlimited elasticity”).

Private and hybrid clouds share these same characteristics, but instead of
selling capacity over publicly accessible interfaces, focus on providing
capacity to an organization’s internal users.

THE ANATOMY OF CLOUD INFRASTRUCTURES

Virtual Infrastructure (VI) management—the management of virtual
machines distributed across a pool of physical resources—becomes a key
concern when building an IaaS cloud and poses a number of challenges.

• In traditional physical resources, virtual machines require a fair amount of
configuration, including preparation of the machine’s software environment
and network configuration.

• In a virtual infrastructure, this configuration must be done on-the-fly, with as
little time between the time the VMs are requested and the time they are
available to the users.

• This is further complicated by the need to configure groups of VMs that will
provide a specific service (e.g., an application requiring a Web server and a
database server).

• Additionally, a virtual infrastructure manager must be capable of allocating
resources efficiently, taking into account an organization’s goals (such as
minimizing power consumption and other operational costs) and reacting to
changes in the physical infrastructure.

THE ANATOMY OF CLOUD INFRASTRUCTURES

• Virtual infrastructure management in private clouds has to deal
with an additional problem:

• Unlike large IaaS cloud providers such as Amazon, private clouds
typically do not have enough resources to provide the illusion of
“infinite capacity.”

• The immediate provisioning scheme used in public clouds, where
resources are provisioned at the moment they are requested, is
ineffective in private clouds.

• Support for additional provisioning schemes is required for
applications that require resources at specific times, such as best-
effort provisioning and advance reservations to guarantee
quality of service (QoS).

• Thus, efficient resource allocation algorithms and policies and the
ability to combine both private and public cloud resources, resulting
in a hybrid approach, become even more important.

THE ANATOMY OF CLOUD INFRASTRUCTURES

Managing virtual infrastructures in a private/hybrid cloud is a different
problem than managing a virtualized data center, and existing tools lack
several features that are required for building IaaS clouds.

• Traditional methods can only operate with some preconfigured placement
policies, which are generally simple (round robin, first fit, etc.) and based only
on CPU speed and utilization of a fixed and predetermined number of
resources, such as memory and network bandwidth.

• Thus, there are still several gaps in existing VI solutions. Filling these gaps
will require addressing a number of research challenges such as virtual
machine management, resource scheduling, SLAs, federation of
resources, and security.

• In this chapter, we focus on three problems addressed by the Virtual
Machine Management Activity of RESERVOIR (Resources and Services
Virtualization without Barriers), an European Union FP7-funded project :

• Distributed management of virtual machines,

• Reservation-based provisioning of virtualized resources, and

• Provisioning to meet SLA commitments.

Distributed Management of Virtual Machines

• The problem of efficiently selecting or scheduling computational

resources is well known. However, the state of the art in VM-based

resource scheduling follows a static approach, where resources

are initially selected using a greedy allocation strategy, with minimal

or no support for other placement policies.

• To efficiently schedule resources, VI managers must be able to

support flexible and complex scheduling policies and must

leverage (use) the ability of VMs to suspend, resume, and migrate.

• This complex task is one of the core problems that the

RESERVOIR project tries to solve. The problem of how to manage

VMs distributed across a pool of physical resources will be

described. OpenNebula, the virtual infrastructure manager

developed by the RESERVOIR project will be explained later.

Reservation-Based Provisioning of Virtualized Resources

• A particularly interesting problem when provisioning virtual
infrastructures is how to deal with situations where the
demand for resources is known beforehand—for example,
when an experiment depending on some complex piece of
equipment is going to run from 2 pm to 4 pm, and
computational resources must be available at exactly that time
to process the data produced by the equipment.

• Commercial clouds do have infinite resources to handle this
situation. On the other hand, when dealing with finite
capacity, a different approach is needed. However, the
intuitively simple solution of reserving the resources
beforehand is not so simple, because it is known to cause
resources to be underutilized, due to the difficulty of
scheduling other requests around an inflexible reservation.

Provisioning to Meet SLA Commitments

• IaaS clouds can be used to deploy services that will be consumed

by users other than the one that has deployed the services.

• There is a distinction between the cloud consumer (i.e., the

service owner; for instance, the company that develops and

manages the applications) and the end users of the resources

provisioned on the cloud (i.e., the service user; for instance, the

users that access the applications).

• Furthermore, service owners will enter into service-level

agreements (SLAs) with their end users, covering guarantees

such as the timeliness with which these services will respond.

• Requirements are formalized in infrastructure SLAs between the

service owner and cloud provider, separate from the high-level

SLAs between the service owner and its end users.

Provisioning to Meet SLA Commitments

• In many cases, either the service owner is not resourceful

enough to perform an exact service sizing or service

workloads are hard to anticipate in advance.

• Therefore, to protect high-level SLAs, the cloud provider

should cater for elasticity on demand.

• Scaling and de-scaling of an application is best managed

by the application itself. The reason is that in many cases,

resource allocation decisions are application-specific and

are being driven by the application level metrics.

Provisioning to Meet SLA Commitments

RESERVOIR proposes a flexible framework where service owners may
register service-specific elasticity rules and monitoring probes, and
these rules are being executed to match environment conditions.

The elasticity of the application should be contracted and formalized as
part of the SLA between the cloud provider and service owner.

This poses interesting research issues on the IaaS side, which can
be grouped around two main topics:

• SLA-oriented capacity planning that guarantees that there is enough
capacity to guarantee service elasticity.

• Continuous resource placement and scheduling optimization that
lowers operational costs and takes advantage of available capacity
transparently to the service while keeping the service SLAs.

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

• Managing VMs in a pool of distributed physical resources

is a key concern in IaaS clouds, requiring the use of a

virtual infrastructure manager.

• OpenNebula is capable of managing groups of

interconnected VMs—with support for the Xen, KVM, and

VMWare platforms—within data centers and private

clouds that involve a large amount of virtual and physical

servers.

• OpenNebula can also be used to build hybrid clouds by

interfacing with remote cloud sites.

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Model and Life Cycle

• The primary target of OpenNebula is to manage VMs. Within

OpenNebula, a VM is modeled as having the following

attributes:

• A capacity in terms of memory and CPU.

• A set of NICs attached to one or more virtual networks.

• A set of disk images. In general it might be necessary to

transfer some of these image files to/from the physical

machine the VM will be running in.

• A state file (optional) or recovery file that contains the

memory image of a running VM plus some hypervisor-specific

information.

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Model and Life Cycle in OpenNebula

The life cycle of a VM within OpenNebula follows several stages:

• Resource Selection. Once a VM is requested to OpenNebula, a feasible
placement plan for the VM must be made. OpenNebula’s default scheduler
provides an implementation of a rank scheduling policy, allowing site
administrators to configure the scheduler to prioritize the resources that are more
suitable for the VM, using information from the VMs and the physical hosts. In
addition, OpenNebula can also use the Haizea lease manager to support more
complex scheduling policies.

• Resource Preparation. The disk images of the VM are transferred to the target
physical resource. During the boot process, the VM is contextualized, a process
where the disk images are specialized to work in a given environment. For
example, if the VM is part of a group of VMs offering a service (a compute cluster,
a DB-based application, etc.), contextualization could involve setting up the
network and the machine hostname, or registering the new VM with a service
(e.g., the head node in a compute cluster). Different techniques are available to
contextualize a worker node, including use of an automatic installation system (for
instance, Puppet or Quattor), a context server, or access to a disk image with the
context data for the worker node (OVF recommendation).

• VM Termination. When the VM is going to shut down, OpenNebula can transfer
back its disk images to a known location. This way, changes in the VM can be
kept for a future use.

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Management

OpenNebula manages a VMs life cycle by orchestrating three different management
areas:
1) virtualization by interfacing with a physical resource’s hypervisor, such as Xen, KVM,
or VMWare, to control (e.g., boot, stop, or shutdown) the VM;

2) image management by transferring the VM images from an image repository to the
selected resource and by creating on-the-fly temporary images; and

3) networking by creating local area networks (LAN) to interconnect the VMs and tracking
the MAC addresses leased in each network.

• Virtualization: OpenNebula manages VMs by interfacing with the physical resource
virtualization technology (e.g., Xen or KVM) using a set of pluggable drivers that
decouple the managing process from the underlying technology. Whenever the core
needs to manage a VM, it uses high-level commands such as “start VM,” “stop VM,”.

• Image Management: VMs are supported by a set of virtual disks or images, which
contains the OS and any other additional software needed by the VM. OpenNebula
assumes that there is an image repository that can be any storage medium or service,
local or remote, that holds the base image of the VMs. There are a number of different
possible configurations depending on the user’s needs. For example, users may want all
their images placed on a separate repository with only HTTP access. Alternatively,
images can be shared through NFS between all the hosts.

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Management

OpenNebula uses the following concepts for its image

management model:

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Management

• Image Repositories refer to any storage medium, local or remote, that

hold the base images of the VMs. An image repository can be a dedicated

file server or a remote URL from an appliance provider, but they need to be

accessible from the OpenNebula front-end.

• Virtual Machine Directory is a directory on the cluster node where a VM is

running. This directory holds all deployment files for the hypervisor to boot

the machine, checkpoints, and images being used or saved—all of them

specific to that VM. This directory should be shared for most hypervisors to

be able to perform live migrations. Any given VM image goes through the

following steps along its life cycle:

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Management

Preparation implies all the necessary changes to be made to the
machine’s image so it is prepared to offer the service to which it is
intended. OpenNebula assumes that the images that conform to a
particular VM are prepared and placed in the accessible image
repository.

Cloning the image means taking the image from the repository and
placing it in the VM’s directory in the physical node where it is going
to be run before the VM is actually booted. If a VM image is to be
cloned, the original image is not going to be used, and thus a copy
will be used. There is a qualifier (Clone) for the images that can
mark them targeting for cloning or not.

Save/Remove if the save qualifier is disabled, once the VM has
been shutdown, the images and all the changes thereof are going
to be disposed of. However, if the save qualifier is activated, the
image will be saved for later use.

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Management

• Networking. Services deployed on a cloud, from a computing
cluster to the classical three-tier business application, require
several interrelated VMs, with a Virtual Application Network
(VAN) being the primary link between them. OpenNebula
dynamically creates these VANs and tracks the MAC
addresses leased in the network to the service VMs. Other
TCP/IP services such as DNS, NIS, or NFS are the
responsibility of the service.

• The physical hosts that will co-form the fabric of our virtual
infrastructures well need to have some constraints in order to
effectively deliver virtual networks to our virtual machines.
Therefore, from the point of view of networking, a physical
cluster is defined as a set of hosts with one or more network
interfaces, each of them connected to a different physical
network.

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Management

Three different VANs can be
distinguished as follows:

• One is mapped on top of the
public Internet network, and we
can see a couple of virtual
machines taking advantage of it.
Therefore, these two VMs will
have access to the Internet.

• The other two are mapped on top
of the private physical network:
The Red and Blue VANs. Virtual
machines connected to the same
private VAN will be able to
communicate with each other,
otherwise they will be isolated and
won’t be able to communicate.

SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY

• While a VI manager like OpenNebula can handle all the minutiae of managing VMs

in a pool of physical resources, scheduling these VMs efficiently is a different and

complex matter.

• Immediate provisioning model is used by commercial cloud providers, such as

Amazon, since their data centers’ capacity is assumed to be infinite.

• Best-effort provisioning where requests have to be queued and prioritized

• Advance provisioning where resources are pre-reserved so they will be

guaranteed to be available at a given time period.

• However, when managing a private cloud with limited resources, an

immediate provisioning model is insufficient. A lease-based resource

provisioning model that can act as a scheduling back-end for OpenNebula,

supporting other provisioning models other than the immediate

provisioning models in existing cloud providers. In particular, Haizea

adds support for both best-effort provisioning and advance reservations,

when managing a finite number of resources.

SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY

Existing Approaches to Capacity Reservation

• Efficient reservation of resources in resource management systems has been

studied considerably, particularly in the context of job scheduling.

• In fact, most modern job schedulers support advance reservation of

resources, but their implementation falls short in several aspects.

• First of all, they are constrained by the job abstraction; when a user makes an

advance reservation in a job-based system, the user does not have direct and

unfettered access to the resources. Cloud users can access the VMs they

requested, and are allowed to submit jobs to them.

• Example-1: PBS Pro creates a new queue that will be bound to the reserved

resources, guaranteeing that jobs submitted to that queue will be executed on

them (assuming they have permission to do so)

• Example-2: Maui and Moab, simply allow users to specify that a submitted job

should use the reserved resources (if the submitting user has permission to do

so).

SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY

Existing Approaches to Capacity Reservation

• Additionally, advance reservations lead to utilization problems [10,13],

caused by the need to vacate resources before a reservation can begin.

• Traditional job schedulers are unable to efficiently schedule workloads

combining both best-effort jobs and advance reservations.

• However, advance reservations can be supported more efficiently by using a

scheduler capable of preempting running jobs at the start of the

reservation and resuming them at the end of the reservation.

• Preemption can also be used to run large parallel jobs (which tend to have

long queue times) earlier, and it is specially relevant in the context of urgent

computing, where resources have to be provisioned on very short notice and

the likelihood of having jobs already assigned to resources is higher.

• While preemption can be accomplished by canceling a running job, the least

disruptive form of preemption is check pointing, where the preempted job’s

entire state is saved to disk, allowing it to resume its work from the last

checkpoint.

SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY

Existing Approaches to Capacity Reservation

• Additionally, some schedulers also support job migration, allowing check-
pointed jobs to restart on other available resources, instead of having to wait
until the preempting job or reservation has completed.

• Check-pointing-based preemption, requires the job’s executable itself to be
checkpointable. An application can be made checkpointable by explicitly
adding that functionality to an application (application-level and library-level
checkpointing) OR transparently by using OS-level checkpointing, where the
operating system (such as Cray, IRIX, and patched versions of Linux using
BLCR [17]) checkpoints a process, without rewriting the program or relinking
it with checkpointing libraries.

• Thus, a job scheduler capable of checkpointing-based preemption and
migration could be used to checkpoint jobs before the start of an advance
reservation, minimizing their impact on the schedule.

• However, the application and library-level checkpointing approaches
burden the user with having to modify their applications to make them
checkpointable, imposing a restriction on the software environment. On the
other hand, OS-level checkpointing is a more appealing option, but still
imposes certain software restrictions on resource consumers.

SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY

Existing Approaches to Capacity Reservation

• An alternative approach to supporting advance reservations was proposed by

Nurmi et al. [18], which introduced “virtual advance reservations for

queues” (VARQ).

• This approach overlays advance reservations over traditional job

schedulers by first predicting the time a job would spend waiting in a

scheduler’s queue and then submitting a job (representing the advance

reservation) at a time such that, based on the wait time prediction, the

probability that it will be running at the start of the reservation is maximized.

• Since no actual reservations can be done, VARQ jobs can run on

traditional job schedulers, which will not distinguish between the regular

best-effort jobs and the VARQ jobs.

• Although this is an interesting approach that can be realistically implemented

in practice (since it does not require modifications to existing scheduler), it

still depends on the job abstraction.

SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY

Existing Approaches to Capacity Reservation

• Hovestadt et al. [19, 20] proposed a planning-based (as opposed to

queuing based) approach to job scheduling, where job requests are

immediately planned by making a reservation (now or in the future),

instead of waiting in a queue.

• Thus, advance reservations are implicitly supported by a planning-

based system. Additionally, each time a new request is received, the

entire schedule is reevaluated to optimize resource usage.

• For example, a request for an advance reservation can be accepted

without using preemption, since the jobs that were originally assigned to

those resources can be assigned to different resources.

SCHEDULING TECHNIQUES FOR ADVANCERESERVATION OF CAPACITY

Reservations with VMs

• Virtualization technologies are a key enabler of many features found in IaaS
clouds. Virtual machines are also an appealing vehicle for implementing
efficient reservation of resources due to:

• Ability to be suspended,

• Potentially migrated,

• Resumed without modifying any of the applications running inside the VM.

• However, virtual machines also raise additional challenges related to the
overhead of using VMs:
• Preparation Overhead. When using VMs to implement reservations, a VM disk

image must be either prepared on-the-fly or transferred to the physical node
where it is needed. Since a VM disk image can have a size in the order of
gigabytes, this preparation overhead can significantly delay the starting time of
leases. This delay may, in some cases, be unacceptable for advance
reservations that must start at a specific time.

• Runtime Overhead. Once a VM is running, scheduling primitives such as
checkpointing and resuming can incur in significant overhead since a VM’s
entire memory space must be saved to disk, and then read from disk. Migration
involves transferring this saved memory along with the VM disk image. Similar to
deployment overhead, this overhead can result in noticeable delays.

The Haizea project
http://haizea.cs.uchicago.edu/

• The Haizea project (http://haizea.cs.uchicago.edu/) was created to develop a

scheduler that can efficiently support advance reservations efficiently by using the

suspend/resume/migrate capability of VMs, but minimizing the overhead of using

VMs.

• The fundamental resource provisioning

abstraction in Haizea is the lease, with

three types of lease currently supported:

• Advanced reservation leases, where the

resources must be available at a specific

time.

• Best-effort leases, where resources are

provisioned as soon as possible and

requests are placed on a queue if

necessary.

• Immediate leases, where resources are

provisioned when requested or not at all.

Haizea’s leasing model and the algorithms

Leasing Model

• when managing a private cloud with limited resources, an immediate provisioning
model is insufficient. A lease-based resource provisioning model that can act
as a scheduling back-end for OpenNebula, supporting other provisioning
models other than the immediate provisioning models in existing cloud
providers. In particular, Haizea adds support for both best-effort provisioning
and advance reservations, when managing a finite number of resources.
The remainder of this section describes Haizea’s leasing model and the
algorithms Haizea uses to schedule these leases.

• We define a lease as “a negotiated and renegotiable agreement between a
resource provider and a resource consumer, where the former agrees to
make a set of resources available to the latter, based on a set of lease
terms presented by the resource consumer.”

• The terms must encompass the following:
• the hardware resources required by the resource consumer, such as CPUs,

memory, and network bandwidth;

• a software environment required on the leased resources;

• and an availability period during which a user requests that the hardware and
software resources be available.

Haizea’s leasing model and the algorithms

Leasing Model

• We focus on the availability dimension of a lease and, in

particular, on how to efficiently support advance

reservations. Thus, we consider the following availability

terms:

• Start time may be unspecified (a best-effort lease) or specified (an

advance reservation lease). In the latter case, the user may specify

either a specific start time or a time period during which the lease

start may occur.

• Maximum duration refers to the total maximum amount of time that

the leased resources will be available.

• Leases can be preemptable. A preemptable lease can be safely

paused without disrupting the computation that takes place inside

the lease.

Haizea’s leasing model and the algorithms

Leasing Model

• Haizea’s resource model considers that it manages W physical
nodes capable of running virtual machines. Each node i has CPUs,
megabytes (MB) of memory, and MB of local disk storage.

• We assume that all disk images required to run virtual machines are
available in a repository from which they can be transferred to
nodes as needed and that all are connected at a bandwidth of B
MB/sec by a switched network.

• A lease is implemented as a set of N VMs, each allocated resources
described by a tuple (p, m, d, b), where p is number of CPUs, m is
memory in MB, d is disk space in MB, and b is network bandwidth in
MB/sec.

• A disk image I with a size of size (I) MB must be transferred from the
repository to a node before the VM can start. When transferring a
disk image to multiple nodes, we use multicasting and model the
transfer time as size(I)/B.

Haizea’s leasing model and the algorithms

Leasing Model

• If a lease is preempted, it is suspended by suspending its VMs,

which may then be either resumed on the same node or

migrated to another node and resumed there.

• Suspending a VM results in a memory state image file (of size m that

can be saved to either a local file system or a global file system

(f ɛ {local, global}).

• Resumption requires reading that image back into memory and then

discarding the file.

• Suspension of a single VM is done at a rate of s megabytes of VM

memory per second, and we define r similarly for VM resumption.

Haizea’s leasing model and the algorithms

Lease Scheduling

• Haizea is designed to process lease requests and determine how those

requests can be mapped to virtual machines, leveraging their

suspend/resume/migrate capability, in such a way that the leases’

requirements are satisfied.

• The scheduling component of Haizea allow best-effort leases to be preempted

if resources have to be freed up for advance reservation requests.

• Additionally, to address the preparation and runtime overheads mentioned

earlier, the scheduler allocates resources explicitly for the overhead activities

(such as transferring disk images or suspending VMs) instead of assuming

they should be deducted from the lease’s allocation.

• Besides guaranteeing that certain operations complete on time (e.g., an image

transfer before the start of a lease), the scheduler also attempts to minimize this

overhead whenever possible, most notably by reusing disk image transfers

and caching disk images on the physical nodes.

Haizea’s leasing model and the algorithms

Lease Scheduling –Best effort

• Best-effort leases are scheduled using a queue. When a best-effort lease is
requested, the lease request is placed at the end of the queue, which is
periodically evaluated using a backfilling algorithm to determine if any leases
can be scheduled.

• The scheduler does this by first checking the earliest possible starting
time for the lease on each physical node, which will depend on the required
disk images. For example, if some physical nodes have cached the required
disk image, it will be possible to start the lease earlier on those nodes.

• Once these earliest starting times have been determined, the scheduler
chooses the nodes that allow the lease to start
the soonest.

• The use of VM suspension/resumption allows the best-effort leases to be
scheduled even if there are not enough resources available for their full
requested duration.

Haizea’s leasing model and the algorithms

Lease Scheduling-Advanced reservation

• Advance reservations, on the other hand, do not go through a queue, since

they must start at either the requested time or not at all.

• Thus, scheduling this type of lease is relatively simple, because it mostly involves

checking if there are enough resources available during the requested interval.

• However, the scheduler must also check if any associated overheads can be

scheduled in such a way that the lease can still start on time.

• For preparation overhead, the scheduler determines if the required images can

be transferred on time.

• These transfers are scheduled using an Earliest Deadline First (EDF) algorithm,

where the deadline for the image transfer is the start time of the advance

reservation lease.

• For runtime overhead, the scheduler will attempt to schedule the lease without

having to preempt other leases; if preemption is unavoidable. The necessary

suspension operations are scheduled; if they can be performed on time.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

• If temporal behavior of services with respect to resource demands is highly

predictable, then capacity can be efficiently scheduled using reservations.

• In this section we focus on less predictable elastic workloads. For these

workloads, exact scheduling of capacity may not be possible. Rather

than that, capacity planning and optimizations are required.

• IaaS providers perform two complementary management tasks:

(1) Capacity planning to make sure that SLA obligations are met as contracted

with the service providers and;

(2) Continuous optimization of resource utilization in specific workload to make

the most efficient use of the existing capacity.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Infrastructure SLAs

• IaaS can be regarded as a giant virtual hardware store, where

computational resources such as virtual machines (VM), virtual

application networks (VAN) and virtual disks (VD) can be ordered

on demand in the matter of minutes or even seconds.

• Chandra et al. [29] quantitatively study advantages of fine-grain

resource allocation in a shared hosting platform. As this research

suggests, fine-grain temporal and spatial resource allocation

may lead to substantial improvements in capacity utilization.

• Amazon EC2 [1] offers small, large, and extra large general-purpose

VM instances and high-CPU, medium and extra large instances. It

is possible that more instance types (e.g., I/O high, memory high,

storage high, etc.) will be added in the future should a demand for

them arise. Other IaaS providers—for example, GoGrid [3] and

FlexiScale [4]—follow similar strategy.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Infrastructure SLAs

• Thus, to deploy a service on a cloud, a service provider orders

suitable virtual hardware and installs its application software on it.

• From the IaaS provider, a given service configuration is a virtual

resource array of black box resources, which correspond to the

number of instances of resource type.

• For example, a typical three-tier application may contain ten

general-purpose small instances to run Web front-ends, three

large instances to run an application server cluster with load

balancing and redundancy, and two large instances to run a

replicated database.

• A risk mitigation mechanism to protect user experience in the IaaS

model is offered by infrastructure SLAs (i.e., the SLAs formalizing

capacity availability) signed between service provider and IaaS

provider.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Infrastructure SLAs

• There is no universal approach to infrastructure SLAs. As the IaaS field
matures and more experience is being gained, some methodologies may
become more popular than others. Also some methods may be more suitable
for specific workloads than other. There are three main approaches as follows.

• No SLAs. This approach is based on two premises: (a) Cloud always has
spare capacity to provide on demand, and (b) services are not QoS sensitive
and can withstand moderate performance degradation. This methodology is
best suited for the best effort workloads.

• Probabilistic SLAs. These SLAs allow us to trade capacity availability for
cost of consumption. Probabilistic SLAs specify clauses that determine
availability percentile for contracted resources computed over the SLA
evaluation period. The lower the availability percentile, the cheaper the
cost of resource consumption. This type of SLA is suitable for small and
medium businesses and for many enterprise grade applications.

• Deterministic SLAs. These are, in fact, probabilistic SLAs where resource
availability percentile is 100%. These SLAs are most stringent and difficult
to guarantee. From the provider’s point of view, they do not admit capacity
multiplexing. Therefore this is the most costly option for service providers,
which may be applied for critical services.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Infrastructure SLAs

• We will focus on probabilistic SLAs, however, because they represent the more
interesting and flexible option and lay the foundation for the rest of discussion on
statistical multiplexing of capacity.

• Before we can proceed, we need to define the concept, elasticity rules, which are are
scaling and de-scaling policies that guide transition of the service from one configuration
to another to match changes in the environment. The main motivation for defining these
policies stems from the pay-as-you-go billing model of IaaS clouds. The service owner is
interested in paying only for what is really required to satisfy workload demands
minimizing the over-provisioning overhead. There are three types of elasticity rules:

• Time-driven: These rules change the virtual resources array in response to a
timer event. These rules are useful for predictable workloads—for example, for
services with well-known business cycles.

• OS Level Metrics-Driven: These rules react on predicates defined in terms of the
OS parameters (see Amazon Auto-scaling Service). These auto-scaling policies are
useful for transparently scaling and de-scaling services. The problem is,
however, that in many cases this mechanism is not precise enough.

• Application Metrics-Driven: This is a unique RESERVOIR offering that allows an
application to supply application-specific policies that will be transparently
executed by IaaS middleware in reacting on the monitoring information supplied by
the service-specific monitoring probes running inside VMs.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Infrastructure SLAs

• For a single service, elasticity rules of all three types can be
defined, resulting in a complex dynamic behavior of a service
during runtime.

• Assuming that a business day is divided into a number of
usage windows, the generic template for probabilistic
infrastructure SLAs is as follows:

• For each Wi, and each resource type rj from the virtual
resource array, capacity range 𝐶 = (𝑟𝑗

𝑚𝑖𝑛, 𝑟𝑗
𝑚𝑎𝑥) is available

for the service with probability pi.

• Probabilistically guaranteeing capacity ranges allows service
providers to define its needs flexibly. For example, for business
critical usage window, availability percentile may be higher than
the regular or off-peak hours.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Policy-Driven Probabilistic Admission Control

• The purpose of statistical admission control is to guarantee that
there is enough capacity to find a feasible placement with
given probability. This mean over-subscription with probabilistically
guaranteed risk of violating SLAs.

• Benefits of statistical multiplexing are well known. This is an
extensively studied field in networking [30-32] and in the context of
CPU and bandwidth allocation in shared hosting platforms
Urgaonkar et al. [33].

• In this work [33], the resources were treated as contiguous, allowing
infinitesimal capacity allocation. We generalize this approach by
means of treating each (number of instances of resource i in the
virtual resources array) as a random variable.

• The virtual resources array is, therefore, a vector of random
variables. Since we assume that each capacity range for each
resource type is finite, both the average resource consumption
rate and variance are computable in resource consumption for
each service in terms of the capacity units for each resource type.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Policy-Driven Placement Optimization

• Policy-driven placement optimization complements capacity
planning and management by improving a given mapping of
physical to virtual resources (e.g., VMs).

• Efficient capacity planning with guaranteed minimal over-
provisioning is still an open research problem.

• Policy-driven management is a management approach based on
“if(condition) then(action)” rules defined to deal with the
situations that are likely to arise [40].

• These policies serve as a basic building blocks for autonomic
computing.

• Partially the difficulties lie in hardness of solving multiple
knapsacks or its more general version, the generalized
assignment problem. Both problems are NP-hard in the strong
sense.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Management Policies and Management Goals.

• Management Policies and Management Goals. Policy-based

management is an overused term. Therefore, it is, beneficial to define

and differentiate our approach to policy-driven admission control and

placement optimization in the more precise terms.

• The overall optimality criteria of placement, however, are controlled by

the management policies, which are defined at a higher level of

abstraction than “if (condition)then(action)” rules. To avoid ambiguity,

we term these policies management goals.

• Management goals, such as “conserve power,” “prefer local

resources over remote resources,” “balance workload,” “minimize

VM migrations,” “minimize SLA non-compliance,” and so forth,

have complex logical structures.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Business-Level Goals and Policies.

• Since business goals are defined at such a high level of abstraction,
a semantic gap exists between them and the ICT level management
goals and policies. Bridging this gap is notoriously difficult. In this
work we aim at narrowing this gap and aligning between the high-
level business management goals and ICT-level management
policies by introducing the notion of Acceptable Risk Level (ARL)
of capacity allocation congestion.

• Intuitively, we are interested in minimizing the costs of capacity over-
provisioning.

• From minimizing the cost of capacity over-provisioning, we are
interested in maximizing yield (usage) of the existing capacity.

• However, at some point, the conflicts (congestions) in capacity
allocation may cause SLA penalties that is opposite to the
advantages of yield maximization.

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

Infrastructure-Level Management Goals and Policies

• In general, infrastructure-level management policies are derived from the business-level
management goals. For example, consider our sample business level management goal
to “reduce energy expenses by 30% in the next quarter.”

• This broadly defined goal may imply, among other means for achieving it, that we
systematically improve consolidation of VMs on physical hosts by putting excessive
capacity into a low-power consumption mode. Thus, a site-wide ICT power
conservation-level management policy may be formulated as: “minimize number of
physical machines while protecting capacity availability SLAs of the application
services.”

• Another example, consider the business-level management goal: “Improve customer
satisfaction by achieving more aggressive performance SLAs.” One possible policy
toward satisfying this business-level goal may be formulated as:

•
“Balance load within the site in order to achieve specific average load per physical
host.”

• Another infrastructure-level management policy to improve performance is: “Minimize
the number of VM migrations.” The rationale for this policy is that performance
degradation necessarily occurs during VM migration.

