

Industrial Robotics

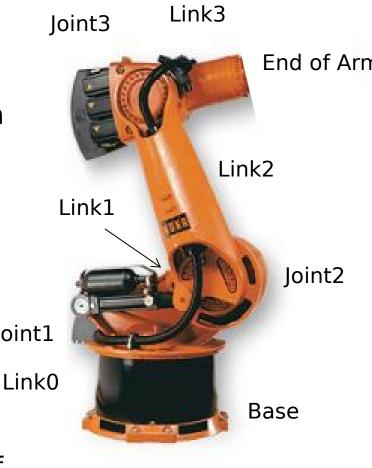
- Bharat Dogra

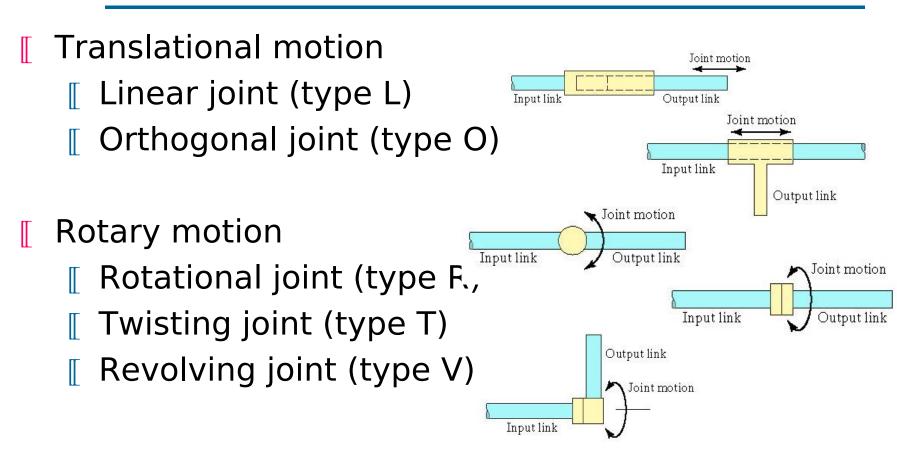
Sections:

- 1. Robot Anatomy
- 2. Robot Control Systems
- 3. End Effectors
- 4. Industrial Robot Applications
- 5. Robot Programming

Industrial Robot Defined

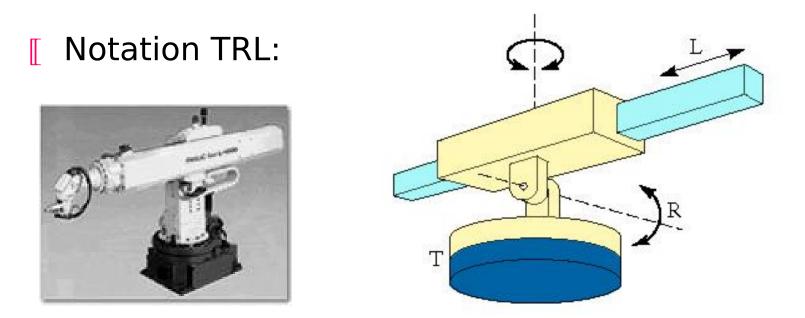
A general-purpose, programmable machine possessing certain anthropomorphic characteristics


- Hazardous work environments
- Repetitive work cycle
- Consistency and accuracy
- [Difficult handling task for humans
- Multishift operations
- [Reprogrammable, flexible
- Interfaced to other computer systems


Robot Anatomy

- [Manipulator consists of joints and links
 - [Joints provide relative motion
 - Links are rigid members between joints
 - Various joint types: linear and rotary
 - Each joint provides a "degree-offreedom"
 - Most robots possess five or six Joint1 degrees-of-freedom
- Robot manipulator consists of two sections:
 - Body-and-arm for positioning of objects in the robot's work volume

Manipulator Joints



- Uses the joint symbols (L, O, R, T, V) to designate joint types used to construct robot manipulator
- Separates body-and-arm assembly from wrist assembly using a colon (:)
- Example: TLR : TR
- Common body-and-arm configurations ...

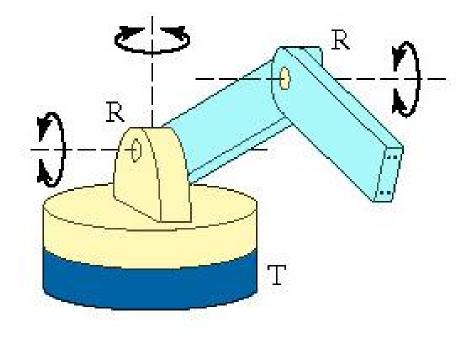
Polar Coordinate Body-and-Arm Assembly

Consists of a sliding arm (L joint) actuated relative to the body, which can rotate about both a vertical axis (T joint) and horizontal axis (R joint)

Cylindrical Body-and-Arm Assembly

Notation TLO:

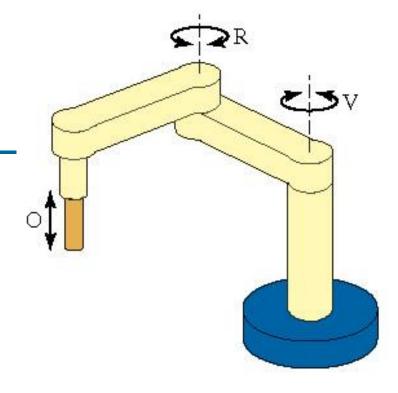
- Consists of a vertical column, relative to which an arm assembly is moved up or down
- The arm can be mov out relative to the co

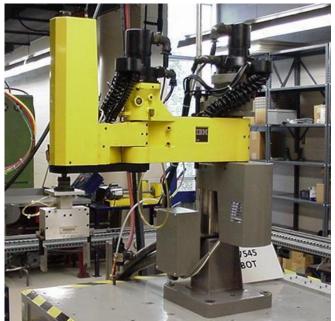

Cartesian Coordinate Body-and-Arm Assembly

- Notation LOO:
- Consists of three sliding joints, two of which are orthogonal
- Other names include rectilinear robot robot

Jointed-Arm Robot

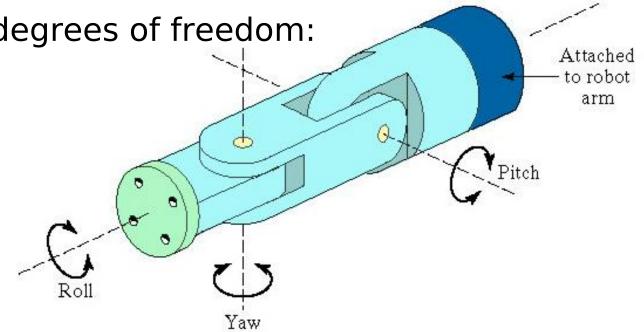
Notation TRR:



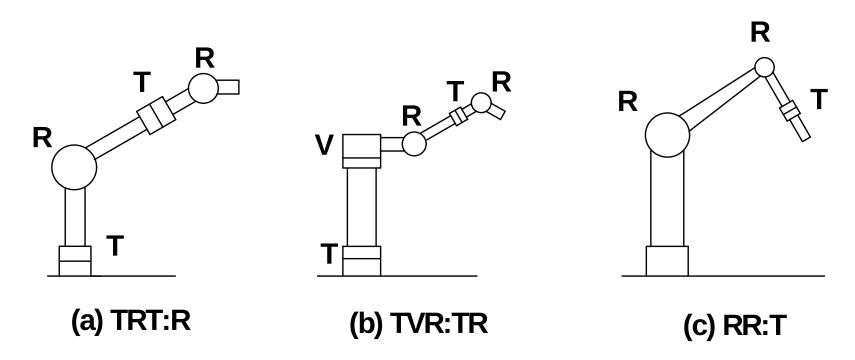


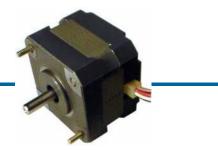
SCARA Robot

- Notation VRO
- SCARA stands for
 Selectively Compliant
 Assembly Robot Arm
- Similar to jointed-arm robot except that vertical axes are used for shoulder and elbow joints to be compliant in horizontal direction for vertical insertion tasks



Wrist Configurations

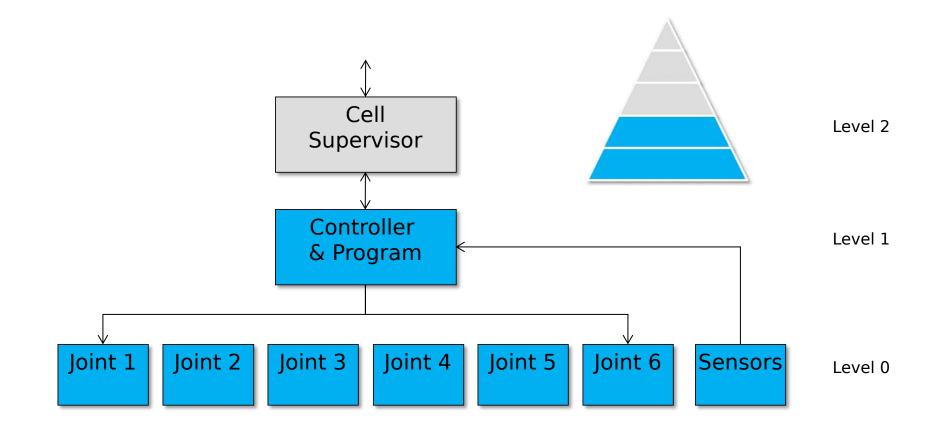

- Wrist assembly is attached to end-of-arm
- End effector is attached to wrist assembly
- Function of wrist assembly is to orient end effector Γ
 - Body-and-arm determines global position of end effector
- Two or three degrees of freedom:
 - Roll
 - Pitch
 - Yaw
- Notation :RRT


Sketch following manipulator configurations (a) TRT:R, (b) TVR:TR, (c) RR:T.

Solution:

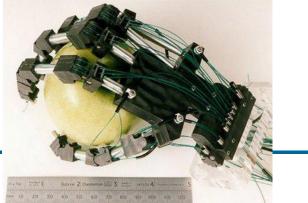
Joint Drive Systems

- [Electric
 - [Uses electric motors to actuate individual joints
 - Preferred drive system in today's robots
- Hydraulic
 - [Uses hydraulic pistons and rotary vane actuators
 - Noted for their high power and lift capacity
- Pneumatic
 - Typically limited to smaller robots and simple material transfer applications

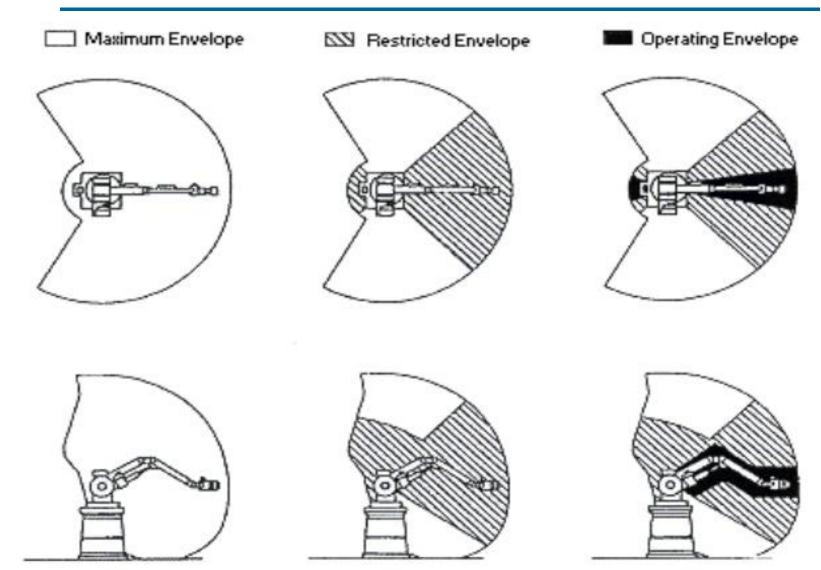

Robot Control Systems

- Limited sequence control pick-and-place operations using mechanical stops to set positions
- Playback with point-to-point control records work cycle as a sequence of points, then plays back the sequence during program execution
- Playback with continuous path control greater memory capacity and/or interpolation capability to execute paths (in addition to points)
- Intelligent control exhibits behavior that makes it seem intelligent, e.g., responds to sensor inputs, makes decisions, communicates with humans

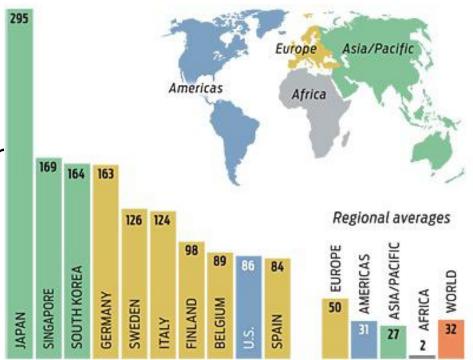
Robot Control System


End Effectors

- The special tooling for a robot that enables it to perform a specific task
- Two types:
 - Grippers to grasp and manipulate objects (e.g., parts) during work cycle
 - Tools to perform a process, e.g., spot welding, spray painting

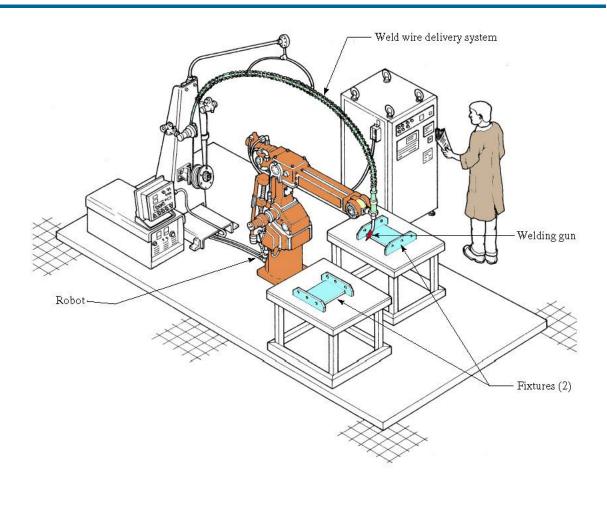

Grippers and Tools

Working Envelope



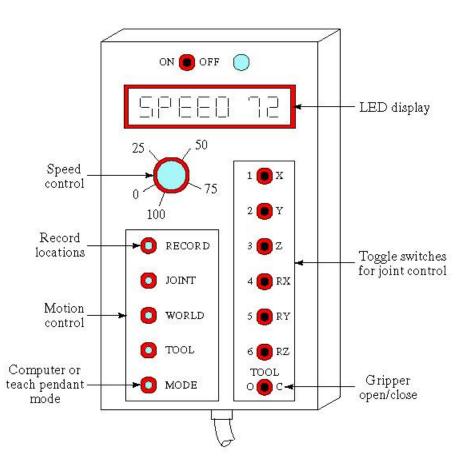
Industrial Robot Applications

- 1. Material handling applications
 - Material transfer pick-and-place, palletizing
 - Machine loading and/or unloading
- 2. Processing operations
 - [Welding
 - Spray coating
 - Cutting and grinding
- 3. Assembly and inspectior


TOP 10 COUNTRIES BY ROBOT DENSITY (Industrial robots per 10 000 manufacturing workers)

Robotic Arc-Welding Cell

Robot performs fluxcored arc welding (FCAW) operation at one workstation while fitter changes parts at the other workstation


Leadthrough programming

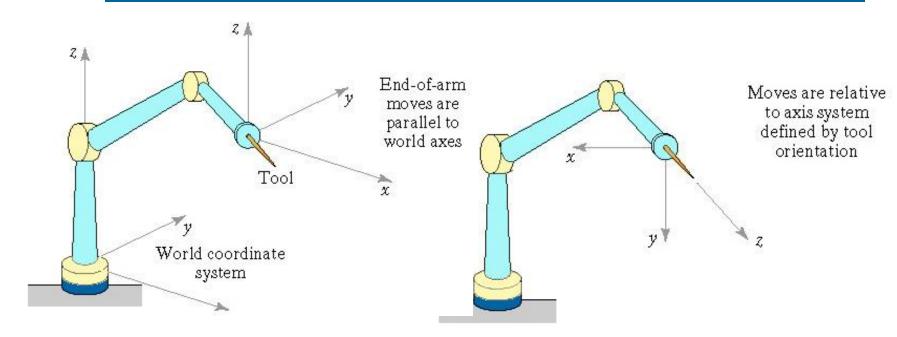
- Work cycle is taught to robot by moving the manipulator through the required motion cycle and simultaneously entering the program into controller memory for later playback
- Robot programming languages
 - [Textual programming language to enter commands into robot controller
- Simulation and off-line programming
 - Program is prepared at a remote computer terminal and downloaded to robot controller for execution without need for leadthrough

Leadthrough Programming

- 1. Powered leadthrough
 - Common for pointto-point robots
 - Uses teach pendant
- 2. Manual leadthrough
 - Convenient for continuous path control robots
 - [Human programmer physical moves manipulator

Leadthrough Programming Advantages

- Advantages:
 - Easily learned by shop personnel
 - Logical way to teach a robot
 - No computer programming
- Disadvantages:
 - [Downtime during programming
 - [Limited programming logic capability
 - Not compatible with supervisory control



Robot Programming

- Textural programming languages
- Enhanced sensor capabilities
- Improved output capabilities to control external equipment
- Program logic
- Computations and data processing
- Communications with supervisory computers

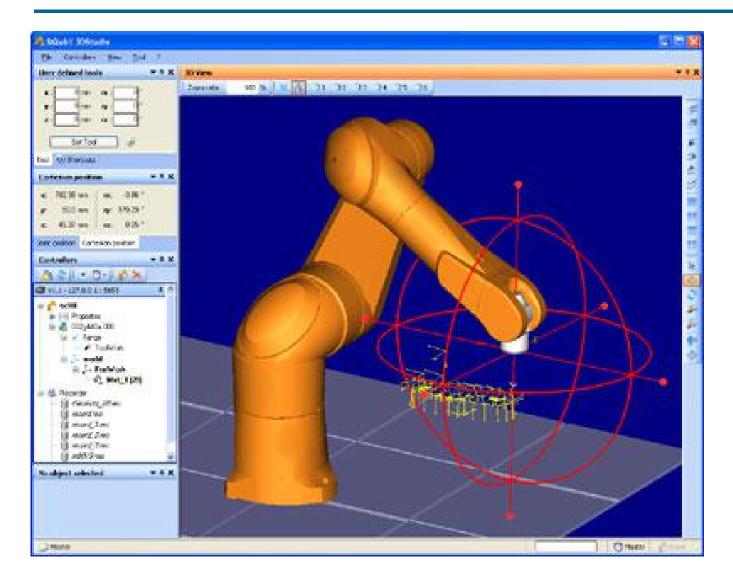
Coordinate Systems

World coordinate system system

Tool coordinate

Motion Commands

MOVE P1 HERE P1 - used during lead through of manipulator **MOVES P1** DMOVE(4, 125) APPROACH P1, 40 MM DEPART 40 MM DEFINE PATH123 = PATH(P1, P2, P3)**MOVE PATH123** SPEED 75



Interlock and Sensor Commands

Interlock Commands WAIT 20, ON SIGNAL 10, ON SIGNAL 10, 6.0 **REACT 25, SAFESTOP Gripper Commands OPEN** CLOSE CLOSE 25 MM CLOSE 2.0 N

Simulation and Off-Line Programming

A robot performs a loading and unloading operation for a machine tool as follows:

- [Robot pick up part from conveyor and loads into machine (Time=5.5 sec)
- [Machining cycle (automatic). (Time=33.0 sec)
- [Robot retrieves part from machine and deposits to outgoing conveyor. (Time=4.8 sec)
- [Robot moves back to pickup position. (Time=1.7 sec)

Every 30 work parts, the cutting tools in the machine are changed which takes 3.0 minutes. The uptime efficiency of the robot is 97%; and the uptime efficiency of the machine tool is 98% which rarely overlap.

Determine the hourly production rate.

Solution

$$\begin{split} T_c &= 5.5 + 33.0 + 4.8 + 1.7 = 45 \; \text{sec/cycle} \\ \text{Tool change time } T_{tc} &= 180 \; \text{sec/30 pc} = 6 \; \text{sec/pc} \\ \text{Robot uptime } E_R &= 0.97, \; \text{lost time} = 0.03. \\ \text{Machine tool uptime } E_M &= 0.98, \; \text{lost time} = 0.02. \\ \text{Total time} &= T_c + T_{tc}/30 = 45 + 6 = 51 \; \text{sec} = \\ 0.85 \; \text{min/pc} \end{split}$$

 $R_c = 60/0.85 = 70.59 \text{ pc/hr}$

Accounting for uptime efficiencies, $R_p = 70.59(1.0 - 0.03 - 0.02) = 67.06 \text{ pc/hr}$

Computer Integrated Manufacturing (CIM)

- Computer Aided Design (CAD)
 - [2D
 - [3D
 - Concurrent Engineering
- Computer Aided Process Planning (CAPP)
 - Variant
 - [Generative
- Computer Aided Manufacturing (CAM)
 - CNC
 - [Robotics
 - Material Handling
 - Just in Time (JIT)
 - Group Technology
 - [Flexible Manufacturing Systems

What is process planning?

- Recipe/Algorithm/Step-by-step instructions
- Fast Food Chain
- Same taste everywhere from NY to LA
- [How do they do it?
- Customization in formal dinner restaurant

- Role of the master machinist in small batch manufacturing
- [Manufacturing is more complex than cooking yet the planning for it is similar
- [Job shop: group machines which perform same operation together
- [Routing of parts through the various departments
- **Process plan defines the route**
- Reduction in the necessary skill of operator can be achieved by using a detailed process plan

Formal Definition

- "Process planning can be defined as an act of preparing processing documentation for the manufacturing of a piece, part or an assembly"
- [depending on the production environment can be
 - Rough
 - Detailed
- [When process planning is done using a computer : "Computer Aided Process Planning"

Step-bystep operations in a sample part

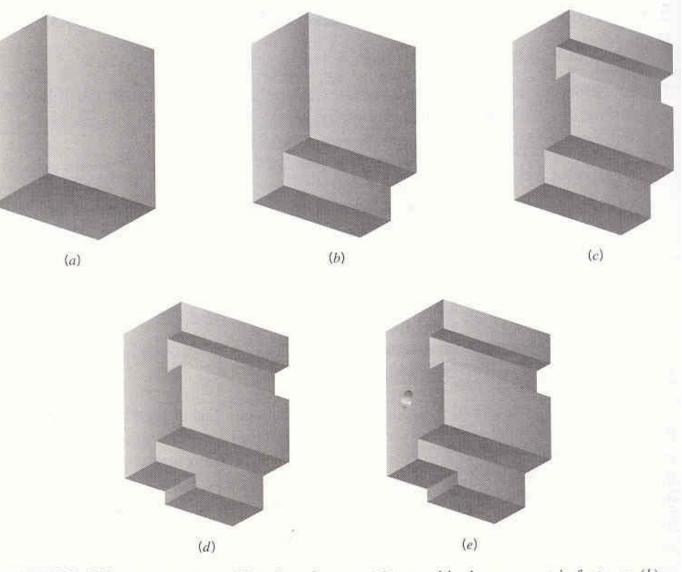


FIGURE 5.7 Successive modification of a part: (a) part with plane geometric features; (b) step addition; (c) slot addition; (d) side step addition; (e) a blind cylindrical hole addition.

Manufacturing a part to meet design specs.

- Selection of initial block
- Sequence of operations
- Selection of machine, process
 - [] Surface finish
 - [Quality
 - [Tolerance
 - [Hardness
 - [Life
 - Cost

A Rough Process Plan

Route Sheet	by:	by: T.C. Chang				
Part No. <u>S1243</u> Part Name: <u>Mounting Bracket</u>						
workstation	Time(min)					
1. Mtl Rm						
2. Mill02	5					
3. Drl01	4					
4. Insp	1	*				

Figure 1.1 A rough process plan

A Detailed Process Plan

PROCESS PLAN					ACE Inc.
Part No. <u>S0125-F</u> Part Name: <u>Housing</u> Original: <u>S.D. Smart</u> Date: <u>1/1/89</u> Checked: <u>C.S. Good</u> Date: <u>2/1/89</u>		Material: <u>steel 4340Si</u> Changes: Dat Approved: <u>T.C. Chang</u> Dat		ite: te: <u>2/14/89</u>	
No.	Operation Description	Workstation	Setup	Tool	Time (Min)
10	Mill bottom surface1	MILL01	see attach#1 for illustration	Face mill 6 teeth/4" dia	3 setup 5 machining
20	Mill top surface	MILL01	see attach#1	Face mill 6 teeth/4" dia	2 setup 6 machining
30	Drill 4 holes	DRL02	set on surface1	twist drill 1/2" dia 2" long	2 setup 3 machining
7					

Components of Process Planning

- Selection of machining operations
- Sequencing of machining operations
- Selection of cutting tools
- Determining the setup requirements
- Calculation of cutting parameters
- Tool path planning and generation of NC/CNC programs
- Design of Jigs/Fixtures

Process Planning in different environments

- In tool-room type manufacturing
 - "make part as per drawing" is sufficient
- In metal-forming type operations
 - [The process planning requirements are embedded directly into the die.
 - Process planning is fairly trivial
- [Job-shop type manufacturing requires most detailed process planning
 - Design of tools, jigs, fixtures and manufacturing sequence are dictated directly by the process plan.

Requirements for process planner

- Must be able to analyze and understand part requirements
- [Have extensive knowledge of machine tools, cutting tools and their capabilities
- [Understand the interactions between the part, manufacturing, quality and cost

- Experienced based and performed manually
- [Variability in planner's judgment and experience can lead to differences in the of what constitutes best quality
- Problem facing modern industry is the current lack of skilled labor force to produce machined parts as was done in the past
- [Hence Computer Integrated Manufacturing and Computer Aided Process Planning

Advantages of CAPP

- Reduces the demand on the skilled planner
- [Reduces the process planning time
- Reduces both process planning and manufacturing cost
- Creates consistent plans
- [It produces accurate plans
- [It increases productivity

Approaches to CAPP

- Variant
- Generative
- [Automatic

Variant Process Planning

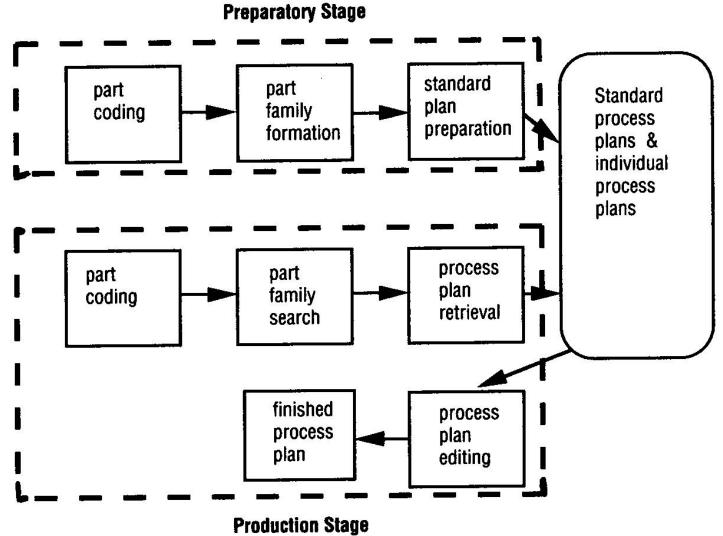
"Based on the valid conjecture that similar parts will have similar process plans"

Preparatory stage

- GT-based part coding
 - [Families of similar parts are created
 - Family matrix
- A process plan is to manufacture the entire family is created

Variant Process Planning

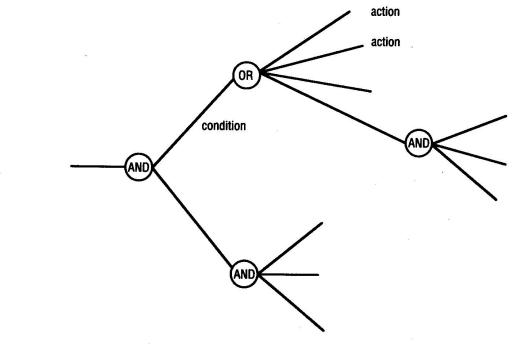
Production Stage


- Incoming part is coded
- Part family is identified
- Process plan is edited to account for the different needs of the part

Salient points of variant process planning

- Easy to build, learn and use
- Experienced process planners are still required to edit the process plan
- [Cannot be used in an entirely automated manufacturing system without additional process planning

Variant Process Planning


"A system which automatically synthesizes a process plan for a new component" Requires

Part description

- [Part to be produced must be clearly and precisely defined in a computer compatible format (OPITZ,AUTAP)
- Manufacturing databases
 - Logic of manufacturing must be identified and captured
 - The captured logic must be incorporated in a unified manufacturing database

- Decision making logic and algorithms
 - [Decision trees
 - Expert Systems:
 - [AI based approaches

" Generate a complete process plan directly from a CAD drawing"

Requires:

[Automated CAD interface

- Take a general CAD model (3D for unambiguous data) and develop an interface to develop a manufacturing interface for this model : Feature Recognition of CAD
- Design the parts with available manufacturing features : Feature based CAD
- [Dual: useful features of both approaches
- Intelligent (computer based) process planner

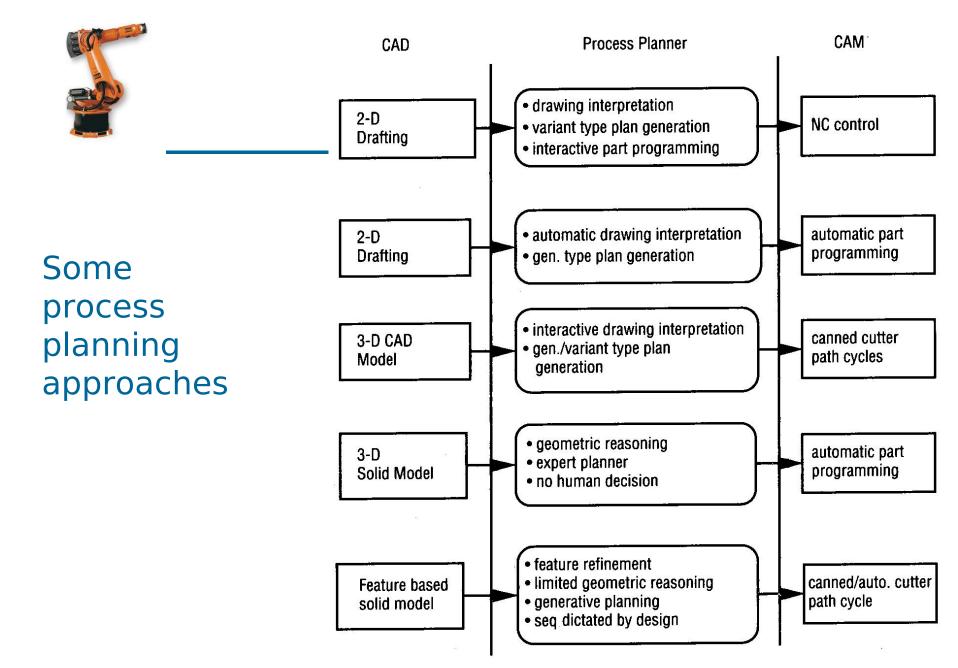


Figure 1.14 Some process planning approaches