
PUSH(s,top,x)

 1.[check for stack overflow]
 if top>=n
 Write(‘stack overflow’)
 Return

 2. [increment top]
 top=top+1;

 3.[insert element]
 s[top]=x

 4.[finished]
 return

Prepared By : Zalak Trivedi, CE dept

POP(s,top)

1.[check for stack underflow]
 If top = 0
 write “stack underflow on pop”
 exit
2. [decrement pointer]
 top = top – 1
3. [return former top element of stack]
 Return (s[top + 1])

Prepared By : Zalak Trivedi, CE dept

PEEP(s,top,i)

1.[check for stack underflow]
 If (top – i + 1) <= 0
 write “stack underflow on peep”
 exit
2. [return ith element from top of the

stack]
 return(s[top – i + 1])

Prepared By : Zalak Trivedi, CE dept

CHANGE(s,top,x,i)

1.[check for stack underflow]
 If (top – i + 1) <= 0
 write “stack underflow on change”
 exit
2. [return ith element from top of the stack]
 s[top – i + 1] = x
3. [return]
 return

Prepared By : Zalak Trivedi, CE dept

RECOGNIZE

1. top = 1
 s[top] = ‘c’
2. next = nextchar[string]
 repeat while next ≠ ‘c’
 if next = ‘ ‘
 then write “invalid string”
 exit
 else call push(s, top,next)
 next = nextchar[string]

Prepared By : Zalak Trivedi, CE dept

RECOGNIZE(cont…)
3. Repeat while s[top] ≠ ‘c’
 next = nextchar(string)
 x = pop(s,top)
 if next ≠ x
 write “invalid string”
 exit
4. If next = ‘ ‘
 write “valid string”
 else write “invalid string”
5. exit

Prepared By : Zalak Trivedi, CE dept

PRECEDENCE TABLE(for
unparenthesized suffix)

SYMBOL PRECEDEN
CE (f)

RANK (r)

+,- 1 -1

*,/ 2 -1

a,b,c.. 3 1

0 -
Prepared By : Zalak Trivedi, CE dept

Operator precedence

Prepared By : Zalak Trivedi, CE dept

UNPARENTHESIZED
SUFFIX/POSTFIX

1. top = 1
 s[top] = ‘#’
2. Polish = ‘ ‘
 rank = 0
 3. next = nextchar[infix]
4. Repeat thru step 6 while next ≠ ‘#’

Prepared By : Zalak Trivedi, CE dept

UNPARENTHESIZED
SUFFIX/POSTFIX(cont..)

5. Repeat while f(next) <= f(s[top])
 temp=pop(s,top)
 polish = polish + temp
 rank = rank + r(temp)
 if rank < 1

 write “invalid”
 Exit

6. Call push(s,top,next)
 next = nextchar(infix)

Prepared By : Zalak Trivedi, CE dept

UNPARENTHESIZED
SUFFIX/POSTFIX(cont…)

7. Repeat while s[top] ≠ ‘#’
 temp = pop(s,top)
 polish = polish + temp
 rank = rank + r(temp)
 if rank < 1
 write “invalid”
 exit
8. If rank = 1
 write “valid”
 else
 write “invalid”
 exit Prepared By : Zalak Trivedi, CE dept

Stack trace of A+B#

INFIX CONTENTS

OF STACK

Postfix RANK

A #A

+ #+ A 1

B #+B A 1

- AB+ 1

Prepared By : Zalak Trivedi, CE dept

PRECEDENCE TABLE(for
parenthesized suffix

Symbol Input
precedence
function(f)

Stack
precedence
function (g)

Rank
function (r)

+,- 1 2 -1

*,/ 3 4 -1

↑ 6 5 -1

Variables 7 8 1

(9 0 -

) 0 - - Prepared By : Zalak Trivedi, CE dept

REVPOL

1. top = 1
 s[top] = ‘(’
2. Polish = ‘ ‘
 rank = 0
3. next = nextchar[infix]
4. Repeat thru step 7 while next ≠ ‘’

Prepared By : Zalak Trivedi, CE dept

REVPOL(cont…)
5. If top < 1
 write “invalid” exit
 repeat while f(next) < g(s[top])
 temp = pop(s,top)
 polish = polish + temp
 rank = rank + r(temp)
 if rank < 1
 write “invalid”
 exit

Prepared By : Zalak Trivedi, CE dept

REVPOL(cont…)
6. If f(next) ≠ g(s[top])

 call push(s,top,next)
 else

 pop(s,top)
 7. next = nextchar(infix)
 8. If top ≠ 0 or rank ≠ 1

 write “invalid”
else
 write “valid”

 exit

Prepared By : Zalak Trivedi, CE dept

Applications of stack

• Recursion
• Polish expressions
• Tower of Hanoi

Prepared By : Zalak Trivedi, CE dept

Tower of Hanoi

• All disks must be on tower at all times.
• Only the disk on top of any tower can

be moved.
• Only small disks are allowed to lye on

top of larger disks.
• You are allowed as many moves as

necessary , but obviously less is
better!

Prepared By : Zalak Trivedi, CE dept

