PUSH(s,top,x)

1.[check for stack overflow]
if top>=n
Write(‘stack overflow’)
Return
2. [Increment top]
top=top+1;
3.[insert element]
s[top]=x
4.[finished]
return

Prepared By : Zalak Trivedi, CE dept

POP(s,top)

1.[check for stack underflow]
If top=0
write “stack underflow on pop”
exit

2. [decrement pointer]
top =top -1

3. [return former top element of stack]
Return (s[top + 1])

Prepared By : Zalak Trivedi, CE dept

PEEP(s,top,i)

1.[check for stack underflow]
If (top—1+1)<=0
write “stack underflow on peep”
exit
2. [return it" element from top of the
stack]
return(sf[top — 1 + 1])

Prepared By : Zalak Trivedi, CE dept

CHANGE(s,top,x,i)

1.[check for stack underflow]
If (top—-i+1)<=0
write “stack underflow on change”
exit
2. [return ith element from top of the stack]
s[ftop—-i+1]=x
3. [return]
return

Prepared By : Zalak Trivedi, CE dept

RECOGNIZE

top =1
s[top] = ‘¢’
next = nextchar[string]
repeat while next # °‘c’
if next=""°
then write “invalid string”
exit
else call push(s, top,next)
next = nextchar[string]

Prepared By : Zalak Trivedi, CE dept

RECOGNIZE(cont...)

3. Repeat while s[top] # ‘c’
next = nextchar(string)

X = pop(s,top)

If next # X
write “invalid string”
exit
4. f next=""

write “valid string”
else write “invalid string”
5. exit

Prepared By : Zalak Trivedi, CE dept

PRECEDENCE TABLE(for
unparenthesized suffix)

SYMBOL |PRECEDEN | RANK (r)
CE ()

+,- 1 -1
I 2 -1
a,b,c.. 3 1
0 -

Operator precedence

Operator Precedence

()

+ (unary) , - (unary), ! (NOT)
* 1, %

+ (addition), - (subtraction)

Prepared By : Zalak Trivedi, CE dept

1.

W

UNPARENTHESIZED
SUFFIX/POSTFIX

top =1
s[top] = ‘#

. Polish=""

rank =0
next = nextchar[infix]
Repeat thru step 6 while next # ‘#

Prepared By : Zalak Trivedi, CE dept

UNPARENTHESIZED
SUFFIX/POSTFIX(cont..)

5. Repeat while f(next) <= f(s[top])
temp=pop(s,top)
polish = polish + temp
rank = rank + r(temp)
if rank < 1
write “invalid”
Exit
6. Call push(s,top,next)
next = nextchar(infix)

Prepared By : Zalak Trivedi, CE dept

UNPARENTHESIZED
SUFFIX/POSTFIX(cont...)
7. Repeat while s[top] # ‘#’
temp = pop(s,top)
polish = polish + temp
rank = rank + r(temp)
if rank <1
write “invalid”
exit
8. Ifrank=1
write “valid”
else
write “invalid”

ex it Prepared By : Zalak Trivedi, CE dept

Stack trace of A+B#

#

A HA
+ H+ A 1
B #+B A 1

Prepared By : Zalak Trivedi, CE dept

PRECEDENCE TABLE(for
parenthesized suffix

Symbol Input
precedence|precedence
function(f) |function (g)

Rank
function (r)

+,- 1

* 3

1 6
Variables 7

(9

2

4
S
8
0

) Prgared By : Zalak Trivedi, CE dept

B w

REVPOL

top =1
s[top] = “(’
Polish=""
rank=0

next = nextchar[infix]
Repeat thru step 7 while next # “’

Prepared By : Zalak Trivedi, CE dept

REVPOL(cont...)

If top < 1
write “invalid” exit
repeat while f(next) < g(s[top])
temp = pop(s,top)
polish = polish + temp
rank = rank + r(temp)
if rank <1
write “invalid”
exit

Prepared By : Zalak Trivedi, CE dept

REVPOL(cont...)

6. If f(next) # g(s[top])
call push(s,top,next)
else
pop(s,top)
7. next = nextchar(infix)
8. Iftop# 0 orrank # 1
write “invalid”
else
write “valid”
exit

Prepared By : Zalak Trivedi, CE dept

Applications of stack

* Recursion
* Polish expressions
 Tower of Hanoi

Prepared By : Zalak Trivedi, CE dept

Tower of Hanoi

» All disks must be on tower at all times.

* Only the disk on top of any tower can
be moved.

* Only small disks are allowed to lye on
top of larger disks.

* You are allowed as many moves as
necessary , but obviously less is
better!

Prepared By : Zalak Trivedi, CE dept

