Design of Helical spring

What is helical spring

Helical spring is a spiral wound wire with a constant coil diameter and uniform pitch.

Function of Helical spring

Used to store energy and subsequently release it
To absorb shock
To maintain a force between contacting surfaces

Design consideration of helical spring

The design of a new spring involves the following considerations:

- Space into which the spring must fit and operate.
- Values of working forces and deflections.
- Accuracy and reliability needed.
- Tolerances and permissible variations in specifications.
- · Environmental conditions such as temperature, presence of a corrosive atmosphere.
- · Cost and qualities needed.

Nomenclature of Helical spring

C = Spring Index D/dd = wire diameter (m) D = Spring diameter (m) Di = Spring inside diameter (m) Dil = Spring inside diameter (loaded) (m) E = Young's Modulus (N/m2)F = Axial Force (N)G = Modulus of Rigidity (N/m2)K W = Wahl Factor = [(4C-1)/(4C+5)] + (0,615/C)L 0 = Free Length (m)Ls = Solid Length (m)n t = Total number of coils n = Number of active coils p = pitch (m)y = distance from neutral axis to outer fibre of wire (m) τ = shear stress (N/m2) т max = Max shear stress (N/m2) θ = Deflection (radians)

Effect of End treatment.

	Plain Ends	Closed Ends	Plain Ends Ground	Closed Ends Ground*
			MMM	
Active Coils, N _a	Nt	N _t -2	Nt-1	N _t -2
Free Length, L _o	N _a p+d	N _a p+3d	(N _a +1)p	N _a p+2d
Solid Length, L _s	(N _a +1)d	(N _a +1)d	(N _a +1)d	(N _a +2)d
Pitch, p	$(L_o-d)/N_a$	(L _o -3d)/N _a	$L_o/(N_a+1)$	(L _o -2d)/N _a

The module calculates the following design parameters:

1. Outer Diameter (Do)

$$D_0 = D + d$$

2. Spring Index (C)

$$D_i = D - d$$

index range is 4 to 12

3. Slenderness ratio

(닎/D)·

4. Spring rate (k)

$$k = \frac{Gd^4}{8D^3N_a}$$

5. Maximum load

$$P_{\max} = k \cdot \delta_{\max}$$

6. Corrected maximum stress

$$\tau_{\max}' = K_w \cdot \tau_{\max}$$

7. Uncorrect maximum stress

$$\tau_{\max} = \frac{8DP_{\max}}{\pi d^3}$$

8. Wahl correction factor

$$K_{w} = \frac{4C - 1}{4C - 4} + \frac{0.615}{C}$$

9. Maximum deflection

$$\delta_{\max} = L_o - L_s$$

10. Spring mass

$$M = \rho L_w \cdot \frac{\pi d^2}{4}$$

11. Wire length

$$L_{w} = \pi D \left(\frac{N_{a}}{\cos(\alpha)} + N_{ia} \right)$$

12. Shear stress

$$G = \frac{E}{2(1+\nu)}$$

13. uncorrected Shear stress

14. Natural frequency

$$f_n = \frac{1}{2} \sqrt{\frac{k}{M}}$$

Spring testing machine

Model TYQ-10

