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Introduction

Use: To store fluids under pressure.

The fluid being stored may undergo a change of state
inside the pressure vessel as in case of steam boilers or it
may combine with other reagents as in a chemical plant.

The pressure vessels are designed with great care because
rupture of a pressure vessel means an explosion which may
cause loss of life and property.

The material of pressure vessels may be brittle such as cast
iron, or ductile such as mild steel.



Classification of Pressure Vessels

According to the dimensions

Thin shell: wall thickness of the shell (t) is less
than 1/10 of the diameter of the shell (d). OR,
internal fluid pressure (p) is less than 1/6 of the
allowable stress

Use: boilers, tanks and pipes

(b)Thick shell: wall thickness of the shell (t) is greater
than 1/10 of the diameter of the shell (d) OR,

internal fluid pressure (p) is greater than 1/6 of the
allowable stress

Use: high pressure cylinders, tanks, gun barrels etc.



2. According to the end construction

open end : A simple cylinder with a piston, such as
cylinder of a press is an example of an open end vessel, In
case of vessels having open ends, the circumferential or
hoop stresses are induced by the fluid pressure.

closed end: A tank is an example of a closed end vessel.,
whereas in case of closed ends, longitudinal stresses in
addition to circumferential stresses are induced.



Stresses in a Thin Cylindrical Shell due to an

Internal Pressure
Assumptions:

1. The effect of curvature of the cylinder wall is
neglected.

2. The tensile stresses are uniformly distributed over the
section of the walls.

3. The effect of the restraining action of the heads at the
end of the pressure vessel is neglected



(a) Circumferential or hoop

stress (b) Longitudinal stress.
Fail along the longitudinal section Eail HCIOSS th.e transverse section
(i.e. circumferentially) splitting the .(1.e. long1tuf:’l1na.lly) splitting .the cylinder
cylinder into two troughs, Fig. (a). into two cylindrical shells, Fig. (b).

(&) Failure of a cylindrical shell

(@) Failure of a cylindrical shell .
along the transverse section,

along the longitudinal section.




Circumferential or Hoop Stress

A tensile stress acting in a direction tangential to the
circumference is called circumferential or

hoop stress

Total force acting on a longitudinal section (i.e. along
the diameter X-X) of the shell

= Intensity of pressure x Projected area

=pxdxl ..(i)

Total resisting force acting on the cylinder walls

R

(b)) Cross-zection of shell.

= ot1 x 2t x [ ...(two sections) ...(ii) "
From equations (i) and (ii),

ot1 X 2t r:f:ﬁd [
=~ Wl




Longitudinal Stress

A tensile stress acting in the direction of the axis is
called longitudinal stress.

It is a tensile stress acting on the *transverse or
circumferential section Y-Y (or on the ends of the
vessel).

Total force acting on the transverse section (i.e.
along Y-Y)

essure x cross-sectional area

..(1)
Total resisting force
G, *xmdt = P"E(d)2 ...(ii)

=J'-'”":""i ns(l)and( _pxd
'-1-f_'Fﬂ 4o,

(5} Cross—section of shell.



Change in Dimensions of a Thin Cylindrical Shell
due to an Internal Pressure

The increase in diameter of the shell due to an intemal pressure 1s given by.

_P_ﬂ(i- ]
~2fE\T

Increase in diameter and length of the shell will also increase its volume.

The increase in volume of the shell due to an internal pressure is given by

57" = Final volume-Oxiginalvohnne=§ (d+ 8d)* (1 + 81) - g xd? ]

- % (d28l+2d13d) ..(Neglecting small quantities)



"Thii'Spherical Shells Subjected to an

2. Thickness of the shell




Change in Dimensions of a Thin Spherical Shell due
to an Internal Pressure

Increase In diameter of the sphenical shell due to an intemal pressure 1s given by,

dl
b= = (1-1)
and mcrease I volume of the sphencal shell due to an intemal pressure 15 ven by,

. ” T T
8 = Final vohume - Original volume = g (d+ 0dy - ik d
i
6
Substituting the value of dd from equation (1), we have

(3d* x 3d) ..(Neglecting higher terms)

2|03
VL) LA

6 |4tE




Thick Cylindrical Shells Subjected to
an Internal Pressure

When a cylindrical shell of a pressure vessel, hydraulic
cylinder and a pipe is subjected to a very high internal fluid
pressure, then the walls of the cylinder must be made
extremely heavy or thick.

In the case of thick wall cylinders, the stress over the section
of the walls cannot be assumed to be uniformly distributed.

They develop both and with
values which are dependent upon the radius of the element
under consideration.



The 1S
and of

the shell.

The is
and of the

(@) Thick cylindrical shell. (6) Tangential stress distnbution. {¢) Radial stress distribution,



Let,
ro = Outer radius of cylindrical shell,
ri = Inner radius of cylindrical shell,
t = Thickness of cylindrical shell = ro - ri,
p = Intensity of internal pressure,
1 = Poisson’s ratio,
ot = Tangential stress, and

or = Radial stress.



1. Lame’s equation

Assuming that the longitudinal fibres of the cylindrical
shell are equally strained,

tangential stress at any radius x is,

il )

g = PO =P () | () () [ p- P,

Y — () x Yy — ()

* radial stress at any radius x,

By -p ) )0

=




Since we are concerned with the internal pressure ( pi = p)
only, therefore substituting the value of external pressure, po =

0. . Tangenhal stress at any radius x.

-~ p @)

-

and radial stress at any radius x,

__p@®y
o T -0

* Maximum tangential stress at the inner surface of the shell,

o _pleP P
r{merr) {:rﬂj:! _ I:i':FI

* Minimum tangential stress at the outer surface of the shell,




maximum radial stress at the inner surface of the shell,
or(max) = — p (compressive)
minimum radial stress at the outer surface of the shell,

or(min) = o



In designing a thick cylindrical shell of brittle material (e.g.
cast iron, hard steel and cast aluminium) with closed or open
ends and in accordance with the maximum normal stress
theory failure, the tangential stress induced in the cylinder

_.p ()" + ()]

wall,

0, = Oppes = —————
¢ '(JID’) ('_0)2_(’;)2

Since ro =11 + t,

o - P+ £ + ()]
' (r+67 - ()

ﬁr_P

The value of ot for brittle materials may be taken as o.125 times the ultimate
tensile strength (cu).



In case of cylinders made of ductile material, Lame’s
equation is modified according to maximum shear stress
theory.

According to this theory, the maximum shear stress at any
point in a strained body is equal to one-half the algebraic
difference of the maximum and minimum principal stresses

at that po ) .p [(ro)2 . (,;)2]

ner surface

* Minimum principal stress at the outer surface,
ot(min) = - p



Maximum Shear Stress

pl) +®)]
_ Ottma) ~ Oy _ (0 ¥ =)

-p)

T=1

] ) )
_Pley+ @Y1+ pl6)Y -] 2p ()
2[(n,)’-(n)’] (Y - ()]
_ pl+t)
-0

T =r )

wr, +1? —1(r) =p(r, + 1)
(r, +1)* (x=p) =(r)?
(it} «




The value of shear stress (t) is usually taken as
one-half the tensile stress (ot).

 From the above expression, we see that if the
internal pressure ( p) is equal to or greater than the
allowable working stress (ot or t), then no thickness
of the cylinder wall will prevent failure.

* So, it is impossible to design a cylinder to withstand
fluid pressure greater than the allowable working
stress for a given material.

*This difficulty is overcome by using compound
cylinders



According to Lame’s equation, the thickness of a
cylindrical shell is given by

It is impossible to design a cylinder to withstand
internal pressure equal to or greater than the
allowable working stress.

This difficulty is overcome by inducing an initial
compressive stress on the wall of the cylindrical shell.
This may be done by the following two methods:

1. By using compound cylindrical shells, and

2. By using the theory of plasticity.



DYy usilig LUlIIpouliua Lyiilidiical

shells,




By using the theory of plasticity.

In the theory of plasticity, a temporary high internal
pressure is applied till the plastic stage is reached near
the inside of the cylinder wall.

This results in a residual compressive stress upon the
removal of the internal pressure, thereby making the
cylinder more effective to withstand a higher internal
pressure.



Outer cylinder
Tensile

Compressive

(a) Compound cylinder. (h) Inner cylinder. (¢) Outer cylinder.




Outer
cylinder

cylinder Tensile
stress

Compressive
stress

() Tangential stress distribution due to (¢) Resultant tangential stress distribution
shrinkage fitting and internal fluid pressure. across a compound cylindrical shell




the tangential stress at any radius x is

P - ) 0 @ [ p-p,
KR ( (z;,)z-(r,)zl -
and radial stress at any radius x,

A .

et A () - () -
Considering the external pressure only,

Bl {1 ()2} :

LI -

..[Substituting p. = 0 in equation (1)

and 6 =— B (6) [ -@} iy

"))l X

X




Considering the internal pressure only,

p(5)° (r,)°
i )2 [H Xz} (V)

(1‘0)2 il (I}

..|Substituting p_ = () in equation (7)]

B IWWVVWIVF T WVWVVViIv = I " §

I T
and 0, = p;(r,) ; l"ﬂ )
A
Since the inner cylinder is subjected to an ext emal pressure (p) caused by the shrink fit and the
outer cylinder is subjected to internal pressure (), therefore from equation (i), we find that the
(angential stress at the inner surface of the inner cylinder,

W] -2p(p)°

- (5)°

(fz)z' (fl)z ) (ﬁ)z_ (fz)z‘ (fl)z
.. |Substituting p =p, x=r,,r =r,and r,= ;|
0 ['"0™ "2 il

[ +

0, = (compressive) . vil)




Radial stress at the inner surface of the inner cylinder,

) 1_(11)
T 6 - W) ()

Similarly from equation (iif), we find that tangemial stress at the outer surface of the inner
cylinder,

0 =0 ..|From equation (1]

:1 o)’ | @ |- ple)’+ ()
- wH B 66

.[Substituting p =p, x=r,,r =r,andr=r]

(compressive) ..(vii)

adial stress at the outer surface of the inner cylinder,

Qg = —P(I'z)z I:l- (Ii)z:|=‘P

()% - (5)° (5)°




Now let us consider the outer cylinder subjected to internal pressure ( p). From equation (v),
we find that the tangential stress at the inner surface of the outer cylinder,

__pw)’ | W |l ()"
w6 6] 6
.[Substituting p.= p, x=r,, r =r;and r.= r,]
This stress is tensile and is shown by cein Fig. 7.9 (c).
Radial stress at the inner surface of the outer cylinder,

0, (tensile) (%)

p(B)° () |
0,4 = (@)2 _Z(rz)z {1 (TZ) } —~if) ...|From equation (v1)]

Similarly from equation (v), we find that the tangential stress at the outer surface of the outer
cylinder,

0y = (tensile) (¥

p (5)° l+(r3)2 _ ()’
§ (

B -w) | B @) -6

..|Substituting p. = p, x=ry, r = ryand r,= ;|



Radial stress at the outer surface of the outer cylinder,

P (fz)z l:l B (13)2} _

T )2 )| (w)

The equations (vii) to (x) cannot be solved until the contact
pressure ( p) Is known. In obtaining a shrink fit, the outside
diameter of the inner cylinder is made larger than the inside
diameter of the outer cylinder. This difference in diameters is
called the interference and is the deformation which the two
cylinders must experience. Since the diameters of the cylinders
are usually known, therefore the deformation should be
calculated to find the contact pressure.



0, = Increase in inner radius of the outer cylinder
0, = Decrease n outer tadius of the inner cylinder,
£ = Young s modulus for the material of the outer cylinder,
£, = Young's modulus for the material of the inner cylinder, and
Il = Poisson s ratio.
We knov that the tangential srain i the outer cylinder at the inner adius (r,

_ Change in cirounfeence2%(4+9,) - 285 9,

£

* Original circumference g j

Alsothe tangenialstain in the outer cylinder at the inner radius (),

" 0 . 1.0y
-
R

£




We have discussed above that the tangential stress at the inner surface of the outer cylinder (or
at the contact surfaces),

TR
()" + (5)°]
0,=04= P 32 22 ...|From equation (ix)]
()" - (5)
and radial stress at the inner surface of the outer cylinder (or at the contact surfaces),
5 =057
Substituting the value of G,,and 0_inequation (xif), we get

: plrg)% )] Mp_p (5)+ (5)°
"Bl rzl E, B | (5 (o)

From equations (x1) and (xiii),

I ... xii)

P -(Ta)

0, = I ..(xiv)

Eo (13)2 - (rz)Z




Similarly, we may find that the decrease in the outer radius of the inner cylinder,

0

/

~ Difference in radius,

8r > 60-61:

P (5)%4+ (5)

2

b

-l
()~

P (13)2+ (rz)2 ﬂl- i Py -(r2)2+ (G)Z
E W -6 ] B 66

I both the cylinders are of the same material, then £ = E = E. Thus the above expression may

be written as

0,=

o

W'+ )+

E

pi

(5 -6 6 -6

)+ 0)416) - 641+ 6116 ()"

E -

(5)*- (5)11(5)" - (s




e e e T e e e e
=RQ[ 2(s)"[(5)" - (1)’ }

E (&)~ ()5) - ()7

o B8, (16"~ (61 - )"
: 5| 2006 - ()°)
Substituting this value of pin equations (vii) to (x), we may obtain the tangential stresses at the
various surfaces of the compound cylinder.
Now let us consider the compound cylinder subjected to an internal fluid pressure ( p). We
have discussed above that when the compound cylinder is subjected to internal pressure ( p, ), then
the tangential stress at any radius (x) is given by

= pz(fz)z {1 (fo)z}
CO-eE 2

.. Tangential stress at the inner surface of the inner cylinder,
o pW 6 ple)+ ()]
“w/-6 ® ®)-E°
.. [Substituting x=r,, r,= ryand r,= ;|
T T T T T e T R =~ e e Ty S T e T

(tensile)



This stress is tensile and is shown by ab'in Fig, 7.9 (d).

Tangential stress at the outer surface of the inner cylinder or inner surface of the outer cylinder,

P; (fl)z

67 - )2

| +

m)" |

o) )+ ()]

()

(tensile)

B)" | (5)- ()’

.. |Substituting x=r,, r =r,and r.=r,]

This stress is tensile and is shown by ce'in Fig, 7.9 (d),

and tangential stress at the outer surface of the outer cylinder,

P; (fl)z

Oq =

| +

(B) - () |

®)° |

2p, )’

W) |

(r)2 (r)z (tensile)
31 vl

..[Substituting x=r,, r =r,and r,= r,]

This stress is tensile and is shown by fg'in Fig. 7.9 (d).



Now the resultant stress at the inner surface of the compound cylinder,
0,=0,+0; or ab-ab

This stress is tensile and is shown by ab"in Fig. 7.9 (e).
Resultant stress at the outer surface of the inner cylinder

=0,+0g or ce-cdorcc
Resultant stress at the inner surface of the outer cylinder

=0,+0, OF ce+ceorce’
.. Total resultant stress at the mating or contact surface,

O =0p*0g+04+0g

This stress is tensile and is shown by ce"'in Fig. 7.9 (e),

and resultant stress at the outer surface of the outer cylinder,

0,=0,+0, or [g+lg

This stress is tensile and is shown by fg"in Fig. 7.9 (e).




1. Design of ram

Let d_= Diameter of ram.
We know that the maximum force to be exerted by the ram (F),

80 10° = 7 (d)2p= 7 (d)*16= 1257 (d)?
(d)? = 80 x 10%12.57 = 6364 or d_=T79.8 say 80 mm Ans.




(d,)°
(d,)*

| ,
b, (dy) [u

} : {(dm)%(d,»zl —
0 ( dro)z— ( d,,)z compressive

Ofiian = ) 2
o) (d_)* - (d,)
and maximum radial stress,
O,y = ~ P, (compressive)
where dm = Quter diameter of ram = df 80 mm
dﬂ = [nner diameter of ram, and
p, = External pressure = p = 16 N/mm’ ..(Given)

Now according to maximum shear stress theory for ductile materials, maximum shear stress is

d,) + (d,)°
-polr( ) 12 -(- po)
. Gt(max) T or(max) (dm) - (dﬂ)
max 2 2
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therefore

Since the maximum shear stress is one-half the maximum principal stress (which is compressive),

(d)°

0( = ZTmax-:zpo -(dm)Z_ (dﬂ)Z_

The ram is usually made of mild steel for which the compressive stress may be taken as
75 N/mm¢, Substituting this value of stress in the above expression, we get

dﬂ
u

() | 32(d,)°
o =2x16 gyz_ (d,)? | 6400 - (d,)°
2
- (dy) 2=75=2.34
6400 - (d,)? 32
(d)? = 2.34 [6400 - (d,)?] = 14 976 - 2.34 (d)?
3.34 (d)? = 14976 or  (d)?=14976/3.34 = 4484

67 mm Ans.
= d =80 mm Ans.




. Design of cylinder

Lef d. = Inner diameter of cylinder, and

d = Quter diameter of cylinder,
o

Assuming a clearance of 15 mm between the ram and the cylinder bore, therefore inner
diameter of the cylinder,

d, = dm + Clearance =80 + 15 =95 mm Ans,

The cylinder is usually made of castiron for which the tensile stress may be takenas 30 N/mm*.
According to Lame's equation, we know that wall thickness of a cylinder,

OI+ p - 1-
I 0= p 1 \
81-1) =38.5 say 40 mm

[ mm




and outside diameter of the cylinder,
d, =d +2t=95+2x40=175 mm Ans.

3. Design of pillars
Let d, = Diameter of the pillar.

The function of the pillars is to support the top plate and to guide the sliding plate. When the
material is being pressed, the pillars will be under direct tension. Let there are four pillars and the load
is equally shared by these pillars.

" Load on each pillar
=80 x 10%4=20 x 10N 1)

We know that load on each pillar

I .TE
. Lipe i i { 2 :
=l (dp) 0,= 1 (dp) 75=589 (dp) i)
From equations (1) and (i),

(dp)2 =20x10%589=340 or d,=18.4mm

From fine series of metric threads, let us adopt the threads on pillars as M 20 x 1.5 having major
diameter as 20 mm and core diameter as 18.16 mm. Ans,



)
< ; > 4. Design of gland
< PCD. — + The gland is shown in Fig 7.11. The width (w) of the

/ //// /%//A LSdC U-leather packing for aram s given empiricallyasZ'\jd_,
|
<P

[ | -

(land + {02.9 \/-d_ ,where d is the diameter (outer) of the ram inmm. ¢

g % 3 3{!{ RIS '
/ Let us take width of the packing as 2.2 \/Z .

—>

1y
!

W% " Width of packing,

w=2280 =197 say 20 mm Ans

and outer diameter of gland,
D, =d +2w=80+2x20=120 mm Ans.
We know that total upward load on the gland

= Area of gland exposed to fluid pressure x Fluid pressure
=n(d +w) wp=m(80+20) 20 x 16 =100 544 N



Let us assume that 8 studs equally spaced on the pitch circle of the gland lange are used for
holding down the gland.

 Load on each stud = 100544 /8§ = 12 568 N

I i the core diameter of the stud and o, i the prmissible ensilestress for he sud material
(hen
Load on each stud,
T

‘ I]T
12968 = . (d)2 0= 1 (dc)2 15=989 (d()2 .. Taking 0 = 75 N

(d)f =12568/389=2134 or  d=146mn

From fine series of metric threads, let us adopt the studs of size M 18 x 1.3 having major
diameter as 18 mm and core diameter (d) a5 10.16 mm. Ans,



Pitch circle diameter of the gland flange,
PCD. =D, +3d =120 +3x16.16 = 168.48 or 168.0 mm Ans.
Outer diameter of the gland flange,
Dy=D,+6d=120+6x16.16=21696 or 217 mm Ans.

and thickness of the gland flange =19d =15 x16.16=2424  or 24.5 mm Ans.

1(5):- ()] 1(5) - ()]
25)"[(5)* - (5)
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Cylinder Heads and Cover Plates

The heads of cylindrical pressure vessels and the
sides of rectangular or square tanks may have flat
plates or slightly dished plates. The plates may either
be cast integrally with the cylinder walls or fixed by °*
means of bolts, rivets or welds. The design of flat
plates forming the heads depend upon the following
two factors.

(@) Type of connection between the head and the
cylindrical wall, (i.e. freely supported or rigidly ¢
fixed);(b) Nature of loading (i.e. uniformly °

distributed or concentrated).

' s?:&; o, ""'IEJ-°:-)«.°



L. Cireular flat plate with uniforniy distrdbuted Ioad. The thickness (t) of a plate with a
diameter (d ) supported at the circumference and subjected to a pressure ( p) uniformly distributed
over the area is given by

Where 0, = Allowable design iress




The coefficient &, depends upon the material of the plate and the method of holding the edgs.
The values of k, for the cast iron and mild steel are given in Table 7.2,

L. Circular flat plate loaded centrally. The thickness () of a flat cast iron plate supported
freely at the circumference with a diameter () and subjected to a load (F) distributed uniformly over

m
anarea ()", is given by

ol (1_0.67d0)F
C o

If the plate with the above given type of loading is fixed rigidly around the circumference, then

[] = 16 Eloge[i]
0, i




3. Rectangular flat plate with uniformly distributed load. The thickness (t,) of a rectangular
plate subjected to a pressure (p) uniformly distributed over the total area is given by

P

where a = Length of the plate; and
b = Width of the plate.
The values of the coefficient k, are given in Table 7.2.

4. Rectangular flat plate with concentrated load. The thickness (¢,) of a rectangular plate
subjected to a load (F) at the intersection of the diagonals is given by

abF
"o o+

The values of coefficient k, are given in Table 7.2.




3. Elliptical plate with uniformly distributed load. The thickness (£,) of an elliptical plate
subjected to a pressure ( p) uniformly distributed over the total area, is given by

P
tl = abk4 JG, (32+ bZ)

where aand b = Major and minor axes respectively.
The values of coefficient k, are given in Table 7.2.

Table 7.2. Values of coefficients k,, k,, k, and k.

Material of the Type of Circular plate Rectangular plate Elliptical
cover plate connection plate
k, k, k, ky
Cast iron Freely supported 0.54 0.75 43 1.5
Fixed 0.44 0.62 4. 1.2
Mild Steel Freely supported 0.42 0.60 3.45 1.2
Fixed 0.35 0.49 3.0 0.9




6. Dished head with uniformly distributed load. Let us consider the following cases of dished
head:

(a) Riveted or welded dished head. When the cylinder head has a dished plate, then the
thickness of such a plate that is riveted or welded as shown in Fig. 7.12 (a), is given by

. _ 416 pk
e
0
where p = Pressure inside the cylinder,

R = Inside radius of curvature of the plate, and
6, = Ultimate strength for the material of the plate.
When there is an opening or manhole in the head, then the thickness of the dished plate is given by

48 pR

0,
[t may be noted that the inside radius of curvature of the dished plate (K) should not be greater

than the inside diameter of the cylinder (d).

i



Dished head Dished head
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(a) Riveted or welded dished head. (h) Integral or welded dished head.




(b) Integral or welded dished head. When the dished plate is fixed integrally or welded to the
cylinder as shown in Fig. 7.12 (B), then the thickness of the dished plate is given by

. p (d2 146 )
' 1boxe
Where ¢ = Camber or radius of the dished plate.

Mostly the cylindrical shells are provided with hemispherical heads. Thus for hemispherical

heads, ¢ = 7 Substituting the value of ¢ in the above expression, we find that the thickness of the

hemispherical head (fixed integrally or welded),

24d2]
d+ 4 X —
t:p 4=pd

1
lﬁmx% 10

...(Same as for thin spherical shells)



. Unstayed flat plate with uniformly distributed load. The minimum thickness (¢ of an
unstayed steel flat head or cover plate is given by

]

= Vgt




|
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Particulars of plate connection

Value of 'k

Plate riveted or bolted rigidly to the shell flange, as shown in
Fig. 7.13 (a).

Integral flat head as shown in Fig. 7.13 (b), d< 600 mm,
t,20.054d.

Flanged plate attached to the shell by a lap joint as shown in
Fig. 7.13 (9, r=31,.

Plate butt welded as shown in Fig. 7.13 (d), r23 ¢,

Integral forged plate as shown in Fig. 7.13 (e), r>3 ¢,

Plate fusion welded with fillet weld as shown in Fig. 7.13 ( f) ,
L2125 ¢,

Bolts tend to dish the plate as shown in Fig. 7.13 (g) and (h).

0.162
0.162
0.30

0.25
0.25
0.50

03+ 104 Whe

H.d
W = Total bolt load, and

H = Total load on
area bounded by
the outside diameter
of the gasket.




