
Advanced Networking
Unit 3

-Madhavi Dave

Reliable Stream Transport
Service (TCP)

Introduction

• TCP is part of the TCP/IP Internet protocol
suite.

• It is an independent, general purpose protocol
that can be adapted for use with other
protocols.

• TCP has been so popular that one of the
International Organization for
Standardization's open systems protocols, TP-
4

Need for Stream Delivery

• At the lowest level, computer communication
networks provide unreliable packet delivery.

• Packets can be lost or destroyed when
transmission errors interfere with data, when
network hardware fails, or when networks
become too heavily loaded to accommodate the
load presented.

• Networks that route packets dynamically can
deliver them out of order, deliver them after a
substantial delay, or deliver duplicates.

Need for Stream Delivery

• At the highest level, application programs
often need to send large volumes of data from
one computer to another.

• Using an unreliable connectionless delivery
system for large volume transfers becomes
tedious and annoying, and it requires
programmers to build error detection and
recovery into each application program.

Need for Stream Delivery

• One goal of network protocol is to find general
purpose solutions to the problems of providing
reliable stream delivery, making it possible for
experts to build a single instance of stream
protocol software that all application programs
use.

• Having a single general purpose protocol helps
isolate application programs from the details of
networking, and makes it possible to define a
uniform interface for the stream transfer service.

Properties Of The Reliable Delivery
Service

• Stream Orientation:

– When two application programs (user processes)
transfer large volumes of data, we think of the
data as a stream of bits, divided into 8-bit octets,
which are informally called bytes.

– The stream delivery service on the destination
machine passes to the receiver exactly the same
sequence of octets that the sender passes to it on
the source machine.

Properties Of The Reliable Delivery
Service

• Virtual Circuit Connection.
– Before transfer can start, both the sending and receiving application

programs interact with their respective operating systems, informing
them of the desire for a stream transfer. Conceptually, one application
places a "call" which must be accepted by the other.

– Protocol software modules in the two operating systems communicate
by sending messages across an internet, verifying that the transfer is
authorized, and that both sides are ready.

– Once all details have been settled, the protocol modules inform the
application programs that a connection has been established and that
transfer can begin.

– During transfer, protocol software on the two machines continue to
communicate to verify that data is received correctly. If the
communication fails for any reason, both machines detect the failure
and report it to the appropriate application programs.

– We use the term virtual circuit to describe such connections because
although application programs view the connection as a dedicated
hardware circuit

Properties Of The Reliable Delivery
Service

• Buffered Transfer:
– Each application uses whatever size pieces it finds

convenient, which can be as small as a single octet.

– At the receiving end, the protocol software delivers octets
from the data stream in exactly the same order they were
sent, making them available to the receiving application
program.

– To make transfer more efficient and to minimize network
traffic, implementations usually collect enough data from a
stream.

– When it reaches the receiving side, the push causes TCP to
make the data available to the application without delay.

Properties Of The Reliable Delivery
Service

• Unstructured Stream:

– It is important to understand that the TCP/IP stream
service does not honor structured data streams.

– For example, there is no way for a payroll application
to have the stream service mark boundaries between
employee records, or to identify the contents of the
stream as being payroll data.

– Application programs using the stream service must
understand stream content and agree on stream
format before they initiate a connection.

Properties Of The Reliable Delivery
Service

• Full Duplex Connection:
– Connections provided by the TCP/IP stream service allow

concurrent transfer in both directions. Such connections are
called full duplex.

– From the point of view of an application process, a full duplex
connection consists of two independent streams flowing in
opposite directions, with no apparent interaction.

– The stream service allows an application process to terminate
flow in one direction while data continues to flow in the other
direction, making the connection half duplex.

– The advantage of a full duplex connection is that the underlying
protocol software can send control information for one stream
back to the source in datagrams carrying data in the opposite
direction. Such piggybacking reduces network traffic.

Providing Reliability

• Reliable stream delivery service guarantees to
deliver a stream of data sent from one machine
to another without duplication or data loss.

• Reliable protocols use a single fundamental
technique known as positive acknowledgement
with retransmission.

• The technique requires a recipient to
communicate with the source, sending back an
acknowledgement (ACK) message as it receives
data.

Simple transfer with positive ACK

• What happens when a packet is lost or
corrupted?

• The sender starts a timer after transmitting a
packet.

• When the timer expires, the sender assumes
the packet was lost and retransmits it.

Sliding Window Paradigm

• The sender transmits a packet and then waits
for an acknowledgement before transmitting
another.

• Data only flows between the machines in one
direction at anytime, even if the network is
capable of simultaneous communication in
both directions.

• The network will be completely idle during
times that machines delay responses.

• The sliding window technique is a more
complex form of positive acknowledgement
and retransmission than the simple method
discussed above.

• Sliding window protocols use network
bandwidth better because they allow the
sender to transmit multiple packets before
waiting for an acknowledgement.

• The protocol places a small, fixed-size window
on the sequence and transmits all packets
that lie inside the window.

• We say that a packet is unacknowledged if it has
been transmitted but no acknowledgement has
been received.

• Technically, the number of packets that can be
unacknowledged at any given time is constrained
by the window size and is limited to a small, fixed
number.

• Sliding window protocol with window size 8,the
sender is permitted to transmit 8 packets before
it receives an acknowledgement.

• The performance of sliding window protocols
depends on the window size and the speed at
which the network accepts packets.

TCP

TCP

• The reliable stream service is so important that the entire
protocol suite is referred to as TCP/IP.

• The protocol specifies the format of the data and
acknowledgements that two computers exchange to
achieve a reliable transfer, as well as the procedures the
computers use to ensure that the data arrives correctly.

• It specifies how TCP software distinguishes among multiple
destinations on a given machine, and how communicating
machines recover from errors like lost or duplicated
packets.

• The protocol also specifies how two computers initiate a
TCP stream transfer and how they agree when it is
complete.

• Although the TCP specification describes how
application programs use TCP in general
terms, it does not dictate the details of the
interface between an application program and
TCP.

• it does not specify the exact procedures
application programs invoke to access these
operations.

• TCP assumes little about the underlying
communication system, TCP can be used with a
variety of packet delivery systems, including the
IP datagram delivery service.

• For example, TCP can be implemented to use
dialup telephone lines, a local area network, a
high speed fiber optic network, or a lower speed
long haul network.

• In fact, the large variety of delivery systems TCP
can use is one of its strengths.

Ports, Connections, And Endpoints

• TCP uses protocol port numbers to identify
the ultimate destination within a machine.

• Each port is assigned a small integer used to
identify.

• TCP ports are much more complex because a
given port number does not correspond to a
single object.

• Instead, TCP has been built on the connection
abstraction, in which the objects to be identified
are virtual circuit connections, not individual
ports.

• Understanding that TCP uses the notion of
connections is crucial because it helps explain the
meaning and use of TCP port User Datagram
(UDP) numbers

• TCP uses the connection, not the protocol
port, as its fundamental abstraction;
connections are identified by a pair of
endpoints.

• We have said that a connection consists of a
virtual circuit between two application
programs.

• Application program serves as the connection
"endpoint."

• There is a connection from machine
(18.26.0.36) at MIT to machine (128.10.2.3) at
Purdue University, it might be defined by the
endpoints:

• (18.26.0.36, 1069) and (128.10.2.3, 25).

Passive And Active Opens

• TCP is a connection-oriented protocol that
requires both endpoints to agree to participate.

• Before TCP traffic can pass across an internet,
application programs at both ends of the
connection must agree that the connection is
desired.

• To do so, the application program on one end
performs a passive open function by contacting
its operating system and indicating that it will
accept an incoming connection.

• The operating system assigns a TCP port number
for its end of the connection.

• The application program at the other end must
then contact its operating system using an active
open request to establish a connection.

• The two TCP software modules communicate to
establish and verify a connection.

• Once a connection has been created, application
programs can begin to pass data; the TCP
software modules at each end exchange
messages that guarantee reliable delivery.

Segments, Streams, And Sequence
Numbers

• TCP views the data stream as a sequence of
octets or bytes that it divides into segments
for transmission.

• Each segment travels across an internet in a
single IP datagram.

• TCP uses a specialized sliding window
mechanism to solve two important problems:
efficient transmission and flow control.

TCP Segment Format

• Segments are exchanged to establish
connections, transfer data, send
acknowledgements, advertise window sizes, and
close connections.

• Because TCP uses piggybacking, an
acknowledgement traveling from machine A to
machine B may travel in the same segment as
data traveling from machine A to machine B,
even though the acknowledgement refers to data
sent from B to A

TCP Segment Format

Timeout And Retransmission

• TCP expects the destination to send
acknowledgements whenever it successfully
receives new octets from the data stream. Every
time it sends a segment, TCP starts a timer and
waits for an acknowledgement.

• If the timer expires before data in the segment
has been acknowledged, TCP assumes that the
segment was lost or corrupted and retransmits it.

• TCP computes an elapsed time known as a
sample round trip time or round trip sample.

Establishing A TCP Connection

• TCP uses a three-way handshake

Closing a TCP Connection

TCP State Machine

• Like most protocols, the operation of TCP can best be explained with
a theoretical model called a finite state machine.

• Circles representing states and arrows representing transitions
between them.

• The label on each transition shows what TCP receives to cause the
transition and what it sends in response.

• For example, the TCP software at each endpoint begins in the
CLOSED state.

• Application programs must issue either a passive open command (to
wait for a connection from another machine), or an active open
command (to initiate a connection).

• An active open command forces a transition from the CLOSED state
to the SYN SENT state.

• When TCP follows the transition, it emits a SYN segment.
• When the other end returns a segment that contains a SYN plus

ACK, TCP moves to the ESTABLISHED state and begins data transfer.

• The TIMED WAIT state reveals how TCP handles some of the problems
incurred with unreliable delivery.

• TCP keeps a notion of maximum segment lifetime (MSL), the maximum
time an old segment can remain alive in an internet.

• To avoid having segments from a previous connection interfere with a
current one, TCP moves to the TIMED WAIT state after closing a
connection.

• It remains in that state for twice the maximum segment lifetime before
deleting its record of the connection.

• If any duplicate segments happen to arrive for the connection during the
timeout interval, TCP will reject them. However, to handle cases where the
last acknowledgement was lost, TCP acknowledges valid segments and
restarts the timer.

• Because the timer allows TCP to distinguish old connections from new
ones, it prevents TCP from responding with a RST (reset) if the other end
retransmits a FIN request.

Reserved TCP Port Numbers

• TCP combines static and dynamic port binding, using a set of
wellknown port assignments for commonly invoked programs (e.g.,
electronic mail), but leaving most port numbers available for the
operating system to allocate as programs need them.

• Although the standard originally reserved port numbers less than
256 for use as well-known ports, numbers over 1024 have now
been assigned.

• It should be pointed out that although TCP and UDP port numbers
are independent, the designers have chosen to use the same
integer port numbers for any service that is accessible from both
UDP and TCP.

• For example, a domain name server can be accessed either with
TCP or with UDP.

• In either protocol, port number 53 has been reserved for servers in
the domain name system.

Silly Window Syndrome And Small
Packets

• The sending and receiving applications operate at different
speeds.

• When a connection is first established, the receiving TCP
allocates a buffer of K bytes, and uses the WINDOW field in
acknowledgement segments to advertise the available
buffer size to the sender.

• If the sending application generates data quickly, the
sending TCP will transmit segments with data for the entire
window.

• Eventually, the sender will receive an acknowledgement
that specifies the entire window has been filled, and no
additional space remains in the receiver's buffer.

• When it learns that space is available, the sending TCP
responds by transmitting a segment that contains one octet
of data.

• The sending TCP must compose a segment that contains
one octet of data, place the segment in an IP datagram, and
transmit the result.

• When the receiving application reads another octet, TCP
generates another acknowledgement, which causes the
sender to transmit another segment that contains one
octet of data.

• The resulting interaction can reach a steady state in which
TCP sends a separate segment for each octet of data.

• Transferring small segments consumes unnecessary
network bandwidth and introduces unnecessary
computational overhead.

• The transmission of small segments consumes unnecessary
network bandwidth because each datagram carries only
one octet of data; the ratio of header to data is large.

• Computational overhead arises because TCP on both the
sending and receiving computers must process each
segment.

• Early TCP implementations exhibited a problem known as
silly window syndrome in which each acknowledgement
advertises a small amount of space available and each
segment carries a small amount of data.

Avoiding Silly Window Syndrome

• A heuristic used on the sending machine avoids
transmitting a small amount of data in each segment.

• Another heuristic used on the receiving machine avoids
sending small increments in window advertisements
that can trigger small data packets.

• Although the heuristics work well together, having both
the sender and receiver avoid silly window helps
ensure good performance in the case that one end of a
connection fails to correctly implement silly window
avoidance.

Receive-Side Silly Window Avoidance

• A receiver maintains an internal record of the currently available
window, but delays advertising an increase in window size to the
sender until the window can advance a significant amount.

• Receive-side silly window prevents small window advertisements in
the case where a receiving application extracts data octets slowly.

• For example, when a receiver's buffer fills completely, it sends an
acknowledgement that contains a zero window advertisement.

• As the receiving application extracts octets from the buffer, the
receiving TCP computes the newly available space in the buffer.

• Instead of sending a window advertisement immediately, the
receiver waits until the available space reaches one half of the total
buffer size or a maximum sized segment.

• Receive-Side Silly Window Avoidance: Before
sending an updated window advertisement
after advertising a zero window, wait for space
to become available that is either at least 50%
of the total buffer size or equal to a maximum
sized segment.

Send-Side Silly Window Avoidance

• To achieve the goal, a sending TCP must allow
the sending application to make multiple calls
to write, and must collect the data transferred
in each call before transmitting it in a single,
large segment.

• That is, a sending TCP must delay sending a
segment until it can accumulate a reasonable
amount of data. The technique is known as
clumping.

• Send-Side Silly Window Avoidance: When a
sending application generates additional data to
be sent over a connection for which previous
data has been transmitted but not acknowledged,
place the new data in the output buffer as usual,
but do not send additional segments until there is
sufficient data to fill a maximum-sized segment.

• If still waiting to send when an acknowledgement
arrives, send all data that has accumulated in the
buffer. Apply the rule even when the user
requests a push operation.

VPN (Private Network
Interconnections)

Private Network

• An organization builds its own TCP/IP internet
separate from the global Internet is referred
as Private Network.

• A private network uses routers to interconnect
networks at each site, and leased digital
circuits to interconnect the sites.

• All data remains private because no outsiders
have access to any part of a private network.

Hybrid Network

• The complete isolation is not always desirable.
Thus, many organizations choose a hybrid
network architecture that combines the
advantages of private networking with the
advantages of global Internet connectivity.

• That is, the organization uses globally valid IP
addresses and connects each site to the Internet.

• The advantage is that hosts in the organization
can access the global Internet when needed, but
can be assured of privacy when communicating
internally.

Virtual Private Network

• The organization that uses the global Internet to
connect its sites can keep its data private using
VPN.

• A VPN is private in the same way as a private
network -the technology guarantees that
communication between any pair of computers in
the VPN remains concealed from outsiders.

• A VPN is virtual because it does not use leased
circuits to interconnect sites.

• Instead, a VPN uses the global Internet to pass
traffic from one site to another.

• Two basic techniques make a VPN possible:
tunneling and encryption.

• To guarantee privacy, a VPN encrypts each
outgoing datagram before encapsulating it in
another datagram for transmission.

VPN Addressing and Routing

VPN with private addresses

• A VPN offers an organization the same addressing
options as a private network.

• If hosts in the VPN do not need general Internet
connectivity, the VPN can be configured to use
arbitrary IP addresses; if hosts need Internet access, a
hybrid addressing scheme can be used.

• A minor difference is that when private addressing is
used, one globally valid IP address is needed at each
site for tunneling.

• Each application gateway handles only one specific
service; multiple gateways are required for multiple
services.

Network Address Translation (NAT)

• A technology has been created that solves the
general problem of providing IP level access
between hosts at a site and the rest of the
Internet, without requiring each host at the
site to have a globally valid IP address.

• Network Address Translation(NAT) requires a
site to have a single connection to the global
Internet and at least one globally valid IP
address.

• NAT translates the addresses in both outgoing
and incoming datagrams by replacing the source
address in each outgoing datagram and replacing
the destination address in each incoming
datagram with the private address of the correct
host.

• All datagram come from the NAT box and all
responses return to the NAT box.

• From the view of internal hosts, the NAT box
appears to be a router that can reach the global
Internet.

• The chief advantage of NAT arises from its
combination of generality and transparency.

• NAT is more general than application gateways
because it allows an arbitrary internal host to
access an arbitrary service on a computer in
the global Internet.

• NAT is transparent because it allows an
internal host to send and receive datagrams
using a private address.

NAT Translation Table Creation

• NAT maintains a translation table that it uses to
perform the mapping.

• Each entry in the table specifies two items: the IP
address of a host on the Internet and the internal
IP address of a host at the site.

• The NAT translation table must be in place before
a datagram arrives from the Internet.
– Manual initialization.

– Outgoing datagrams.

– Incoming name lookups.

Interaction Between NAT And ICMP

• Even straightforward changes to an IP address can cause unexpected side-
effects in higher layer protocols.

• For example, suppose an internal host uses ping to test reachability of a
destination on the Internet.

• The host expects to receive an ICMP echo reply for each ICMP echo
request message it sends.

• Thus, NAT must forward incoming echo replies to the correct host.
• However, NAT does not forward all ICMP messages that arrive from the

Internet.
• If routes in the NAT box are incorrect, for example, an ICMP redirect

message must be processed locally.
• Thus, when an ICMP message arrives from the Internet, NAT must first

determine whether the message should be handled locally or sent to an
internal host.

• Before forwarding to an internal host, NAT translates the ICMP message.

Interaction Between NAT And
Applications

• Although ICMP makes NAT complex, application
protocols have a more serious effect.

• In general, NAT will not work with any application
that sends IP addresses or protocol ports as data.

• NAT affects ICMP and higher layer protocols;
except for a few standard applications like FTP, an
application protocol that passes IP addresses or
protocol port numbers as data will not operate
correctly across NAT.

Conceptual Address Domains

• We have described NAT as a technology that can
be used to connect a private network to the
global Internet.

• In fact, NAT can be used to interconnect any two
address domains.

• The individual can assign private addresses to the
computers at home, and use NAT between the
home network and the corporate intranet.

• The corporation can also assign private addresses
and use NAT between its intranet and the global
Internet.

DHCP

Introduction

• To overcome some of the drawbacks of RARP,
researchers developed the BOOTstrap Protocol
(BOOTP).

• Later, the Dynamic Host Configuration Protocol
(DHCP) was developed as a successor to BOOTP.

• Because the two protocols are closely related,
most of the description applies to both.

• DHCP extends the functionality to provide
dynamic address assignment.

Using IP To Determine An IP Address

• BOOTP uses UDP to carry messages and UDP
messages are encapsulated in IP datagrams
for delivery.

• An application program can use the limited
broadcast IP address to force IP to broadcast a
datagram on the local network before IP has
discovered the IP address of the local network
or the machine's IP address.

Need For Dynamic Configuration

• BOOTP was designed for a relatively static environment
in which each host has a permanent network
connection.

• A manager creates a BOOTP configuration file that
specifies a set of BOOTP parameters for each host.

• The file does not change frequently because the
configuration usually remains stable.

• With the advent of wireless networking and portable
computers such as laptops and notebooks, it has
become possible to move a computer from one
location to another quickly and easily and BOOTP does
not support it.

Dynamic Host Configuration

• IETF has designed Dynamic Host Configuration
Protocol (DHCP) which extends BOOTP in two
ways
– DHCP allows a computer to acquire all the

configuration information it needs in a single message
– DHCP allows a computer to obtain IP address quickly

and dynamically

• DHCP allows three types of address assignment
– manual configuration
– automatic configuration
– dynamic configuration

Dynamic IP Address Assignment

• Dynamic address assignment is not a one-to-one mapping, and the server
does not need to know the identity of a client.

• In particular, a DHCP server can be configured to permit an arbitrary
computer to obtain an IP address and begin communicating.

• Thus, DHCP makes it possible to design systems that auto configure.
• To make auto configuration possible, a DHCP server begins with a set of IP

addresses that the network administrator gives the server to manage.
• The administrator specifies the rules by which the server operates.
• A DHCP client negotiates use of an address by exchanging messages with a

server.
• In the exchange, the server provides an address for the client, and the

client verifies that it accepts the address.
• Once a client has accepted an address, it can begin to use that address for

communication.

DHCP Message Format

DNS

Domain Name System

• The earliest computer systems forced users to
understand numeric addresses for objects like
system tables and peripheral devices.

• Timesharing systems advanced computing by
allowing users to invent meaningful symbolic
names for both physical objects and abstract
objects

Flat Namespace

• In this each name consisted of a sequence of
characters without any further structure.

• The main advantage of a flat namespace is
that names are convenient and short.

• The main disadvantage is that a flat
namespace cannot generalize to large sets of
machines for both technical and
administrative reasons.

Hierarchical Namespace

• TCP/IP using this scheme for address mapping.
• The partitioning of a namespace must be defined

in a way that supports efficient name mapping
and guarantees autonomous control of name
assignment.

• Besides making it easy to delegate authority, the
hierarchy of a large organization introduces
autonomous operation.

• Authority always passes down the corporate
hierarchy, information can flow across the
hierarchy from one office to another.

Internet Domain Names

• The mechanism that implements a machine
name hierarchy for TCP/IP internets is called
the Domain Name System

• Any suffix of a label in a domain name is also
called a domain.

• The first section considers the name syntax,
and later sections examine the
implementation.

Official And Unofficial Internet Domain
Names

