UNIT-3

Ignition System

Objectives

- Describe the functions of ignition system parts
- Explain the operation of points, electronic, and computer ignition systems
- Give an overview of the different spark advance methods
- Describe distributorless and conventional ignition distributor variations and operation
- Draw a wiring diagram showing the primary and secondary ignition systems

Introduction

- Ignition system
 - Turns the engine on and off
 - Creates a timed spark and distributes it to the cylinders
 - Spark is distributed to the spark plugs
 - Jumps the gap and ignites air-fuel mixture
 - Timing of the spark varies with engine speed
 - Amount of time for fuel to burn in the cylinder is constant

Basic Ignition System

- Modern vehicles have computercontrolled ignition systems
 - Main ignition system categories
 - Distributor ignition (DI)
 - Electronic ignition (EI) (i.e., distributorless, direct ignition, or coil over plug)
 - All ignition types use battery, switch, coil, switching device, and spark plugs
 - Circuits
 - Primary circuit: low-voltage (battery)
 - Secondary circuit: high-voltage (spark)

Primary Circuit

- Primary ignition system components
 - Battery and charging system
 - Ignition switch and coil primary windings
 - Switching device
 - Distributor cam lobes or crank/cam sensor
 - Ground return path
- Battery voltage converted to high voltage by ignition coil
 - Spark jumps across gap at end of spark plug
 - Spark timing is critical to power output

Ignition Switch

- Multiposition switch
 - Powers the ignition circuit on and off
 - Operates the steering wheel lock and a buzzer or light

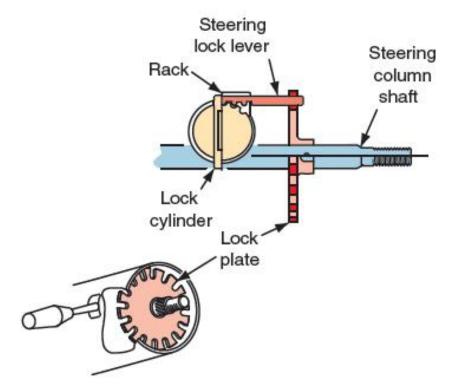


Figure 37.2 The key switch also operates the steering wheel lock.

Ignition Coil

- Heart of the ignition system
 - Has a low-voltage primary winding and high-voltage secondary winding
- Magnetic field
 - Collapses when current flow is interrupted in primary winding
- Magnetic lines of force
 - Cut across the secondary windings and create high voltage and low amperage

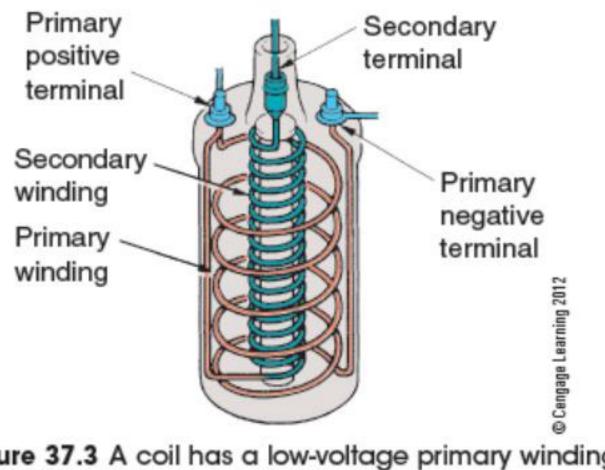
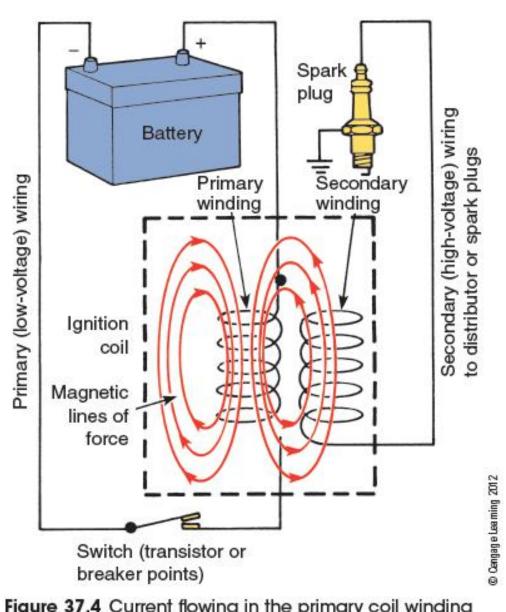
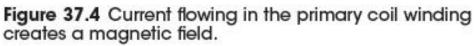




Figure 37.3 A coil has a low-voltage primary winding and a high-voltage secondary winding.

Ignition Coil (cont'd.)

- Saturation
 - Coil is saturated when magnetic field finished its buildup inside coil
 - Coil saturation time depends on amount of current in primary winding
- Dwell
 - Length of time current flows in primary winding
 - Determined by ignition control module
 - Electronic ignition varies dwell time

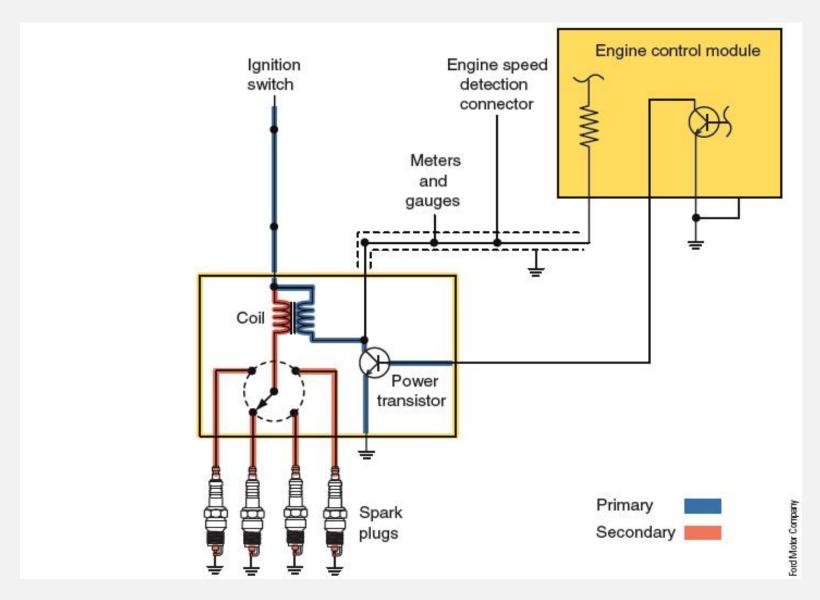
Secondary Ignition Parts

- Secondary circuit
 - Delivers high voltage from coil to spark plugs
- Distributor ignition (DI) system components
 - Cam
 - Distributor cap and rotor
 - DI systems: electricity flows from coil to distributor cap and rotor
 - Distributor rotates at one-half crankshaft speed
 - Spark plug cables are inserted in the distributor cap following engine firing order

Spark Plugs

- Spark ignites compressed air-fuel mixture
 - Length of threaded area called reach
 - Heat range indicates how fast heat travels away from the center electrode
 - Determined by how far ceramic insulator extends into combustion chamber
 - Spark plugs have a tapered seat or flat seat with a gasket to seal against cylinder head
 - There is controversy over long-life spark plugs
 - Precious metals are used to prolong life

Spark Plugs (cont'd.)


- Resistor plugs and wires
 - Resistance added to secondary ignition system with spark plugs or spark plug cables
 - Resistor inside spark plug raises firing voltage required by the output coil
- Spark plug cable
 - Resistor cables are very fragile
 - Secondary wiring must be well insulated
 - Leak in insulation will cause a spark to short to ground

Electronic Ignitions

- Trigger mechanism
 - Controls current flow in primary coil winding
- Nonelectric ignition systems
 - Used mechanical contact points
 - Alternately energized and then opened primary ignition circuit
 - Contact points require periodic replacement
 - Experience wear to rubbing block that rides against the distributor cam

Electronic Ignition Operation

- Transistor triggers buildup and collapse of magnetic field
 - Housed in an ignition module or in PCM
- Transistor
 - Electronic switch or relay
 - Power transistor: controlled by driver transistor
 - Components: emitter, collector, and base
 - Switches when a small amount of current is applied to its base

Power transistor switches the coil on and off

Electronic Ignition Variations

- Common electronic trigger: permanent magnet (PM) AC generator pickup
 - Works like an alternator
 - Pickup coil: wrapped around iron pole piece
 - Trigger wheel: attached to distributor shaft
 - Low magnetic reluctance
 - Reluctor tooth moves away from pole piece and magnetic field becomes weaker
 - Ignition module: alternating signal from PM generator is converted to DC

Hall-Effect Pickups

- Most popular electronic ignition triggering device
 - Has a stationary sensor and rotating trigger wheel
 - Signal is a rise in voltage followed by a drop
 - Components: permanent magnet, Hall element, and cupped metal ring
 - Creates a small analog voltage signal strengthened by an amplifier
 - Converted to square wave by Schmidt trigger
 - Generate rpm signals and are very accurate
 - Used as a crankshaft position sensor

Magnetoresistive Sensors

- Create a square wave digital signal
 - Includes two MR pickups phased a small distance from each other
 - Creates its own five-volt reference signal
 - Permanent magnet is sandwiched between two sideways magnetic reluctance pickups
 - One pickup gets the signal sooner than the other
 - Differential signal switches a Schmidt trigger

Optical Sensors

- A beam of light controls primary circuit
 - Sensor shines beam on one side of slotted disc
 - Disc interrupts the light: voltage stops
- Automotive engine use
 - Called crank angle sensors
 - Computer determines crankshaft position, cylinder identification, and rpm from openings

Ignition Modules

- Newer ignition modules functions
 - Turn primary current on and off
 - Limit current
 - Vary dwell
- Current limiting system
 - Has variable resistance within an ignition module
 - Ignition module turns current flow off as soon as coil primary winding is saturated

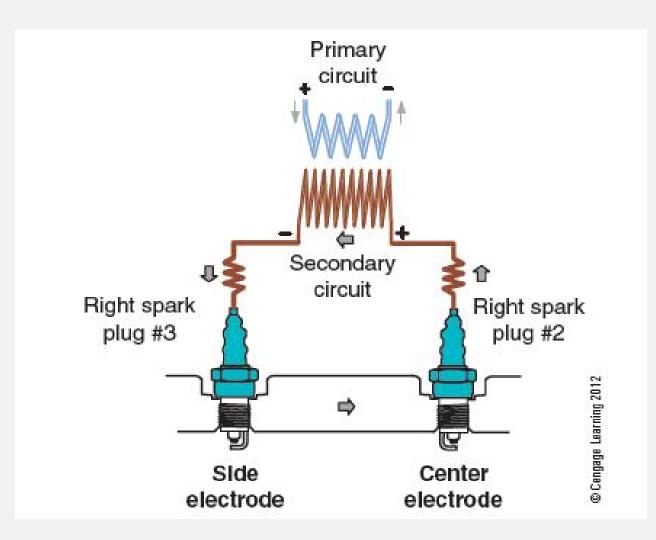
Ignition Timing

- Ignition is timed
 - So it occurs just before piston reaches top of compression stroke
- Ignition timing variation
 - Computer determines best ignition timing setting
 - Advanced or retarded in response to engine speed and load changes, altitude, and engine temperature
 - Intake manifold vacuum senses engine load

Ignition Timing (cont'd.)

- Computer systems continuously adjust spark timing to optimize power and emissions
- Some functions were not possible with mechanical distributors
 - Throttle position sensor determines throttle position
 - MAP sensor determines intake manifold pressure
 - Primary trigger interprets engine speed
 - Coolant temperature sensor allows adjustments for changes in engine temperature

Detonation Sensor


- Controls maximum spark advance
 - Piezoelectric crystal detects the frequency of spark knock
 - PCM retards timing in steps until vibration stops
 - Advances timing until knocking occurs
 - Checks if outside air temperature is high to prevent detonation

Distributorless Ignition

- Advantages of El
 - Reduced cost and lower maintenance
 - No rotor, distributor cap, or spark plug cables
- Crankshaft position sensor
 - Determines engine speed and crankshaft position
- Camshaft position sensor
 - Gives information for sequencing fuel injection system and coil firing

Distributorless Ignition (cont'd.)

- Waste spark
 - One coil for every two spark plugs
- Some engines have two spark plugs per cylinder
 - One on the combustion chamber's intake side
 - The other is on the exhaust side

THANK YOU