

Module 2

Work and Heat

We Concentrate On Two Categories Of Heat And Work

> Thermodynamic definition of work:

Positive work is done by a system when the sole effect external to the system could be reduced to the rise of a weight.

> Thermodynamic definition of heat:

It is the energy in transition between the system and the surroundings by virtue of the difference in temperature.

Traits of Engineers

All our efforts are oriented towards how to convert heat to work or vice versa:

Heat to work Thermal power plant

Work to heat Refrigeration

Next, we have to do it in a sustained manner (we cant use fly by night techniques!!) ➤We require a combination of processes.

➤Sustainability is ensured from a cycle

A system is said to have gone through a cycle if the initial state has been regained after a series of processes

Sign Conventions

- Work done BY the system is +ve
- Obviously work done ON the system is -ve
- Heat given TO the system is +ve
- Obviously Heat rejected by the system is -ve

Types of Work Interaction

Types of work interaction

- Expansion and compression work (displacement work)
- > Work of a reversible chemical cell
- > Work in stretching of a liquid surface
- Work done on elastic solids
- Work of polarization and magnetization

Notes on Heat

 \succ All temperature changes need not be due to heat alone

eg: Friction

> All heat interaction need not result in changes in temperature

eg: condensation or evaporation

Various Types of Work

- Displacement work (pdV work)
- \succ Force exerted, F= p. A
- ≻ Work done

dW = F.dL = p. A dL = p.dV

► If the piston moves through a finite distance say 1-2,Then work done has to be evaluated by integrating $\delta W = \int p dV$

Work (Contd...)

Other Possible Process

> pv=constant (it will be a rectangular hyperbola)

 \succ In general pvⁿ= constant

IMPORTANT: always show the states by numbers/alphabet and indicate the direction.

>n=0 Constant pressure
>n=1 pv=constant
>n=∞ Constant volume

 $(V_2 > V_1 - expansion)$ $(p_2 < p_1; V_2 > V_1 - expansion)$ $(p_2 < p_1 - cooling)$

Others Forms Of Work

Stretching of a wire:

Let a wire be stretched by dL due to an application of a force F Work is done on the system. Therefore dW=-FdL

Electrical Energy:

Flowing in or out is always deemed to be work dW= -EdC= -EIdt

- Work due to stretching of a liquid film due to surface tension:
 Let us say a soap film is stretched through an area dA
 dW= -σdA
 - where σ is the surface tension.